
 

Pinkerton, et al.  1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

 James Pinkerton 
draft-pinkerton-iwarp-sdp-v1.0   Microsoft Corporation 
 Ellen Deleganes 
   Intel Corporation 
 Michael Krause 
   Hewlett-Packard Company 
  
  
 October 31, 2003 

  

Sockets Direct Protocol (SDP) for iWARP over TCP (v1.0) 

1 Status of this Memo 

This document is a Release Specification of the RDMA Consortium. 
Copies of this document and associated errata may be found at 
http://www.rdmaconsortium.org. 

2 Abstract 

SDP is a byte-stream transport protocol that closely mimics TCP's 
stream semantics. SDP utilizes iWARP's advanced protocol offload, 
kernel bypass, and zero copy capabilities. Because of this, SDP can 
have lower CPU and memory bandwidth utilization when compared to 
conventional implementations of sockets over TCP, while preserving 
the familiar byte-stream oriented semantics upon which most current 
network applications depend. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

3 Conventions 

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, 
SHOULD,SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, 
when they appear in this document, are to be interpreted as 
described in [RFC2119]. 

 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  3 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Table of Contents 

1 Status of this Memo....................................... 1 
2 Abstract ................................................. 1 
3 Conventions .............................................. 2 
4 Introduction.............................................. 6 
4.1 Architectural Goals....................................... 7 
4.2 Overview of the Byte-Stream Protocol ...................... 7 
5 Definitions .............................................. 9 
6 SDP Message Formats...................................... 13 
6.1 Base Sockets Direct Header (BSDH) ........................ 13 
6.1.1 Message Identifier (MID) ............................... 13 
6.1.2 Flags.................................................. 15 
6.1.3 Buffers (Bufs) ......................................... 16 
6.1.4 Length (Len) ........................................... 16 
6.1.5 Message Sequence Number (MSeq).......................... 16 
6.1.6 Message Sequence Number Acknowledgement (MSeqAck) ....... 16 
6.2 Connection Management Messages ........................... 17 
6.2.1 Hello Message (HH) ..................................... 17 
6.2.2 HelloAck Message (HAH) ................................. 19 
6.2.3 DisConn Message ........................................ 21 
6.2.4 AbortConn Message ...................................... 21 
6.3 Data Transfer and Flow Control Messages................... 21 
6.3.1 Data Message ........................................... 21 
6.3.2 SrcAvail Message (SrcAH) ............................... 21 
6.3.3 SinkAvail Message (SinkAH) ............................. 23 
6.3.4 RDMA Messages .......................................... 24 
6.3.5 SendSm Message ......................................... 24 
6.3.6 RdmaWrCompl Message (RWCH) ............................. 24 
6.3.7 RdmaRdCompl Message (RRCH) ............................. 25 
6.3.8 ModeChange Message (MCH) ............................... 26 
6.3.9 SrcAvailCancel Message ................................. 27 
6.3.10 SinkAvailCancel Message............................... 27 
6.3.11 SinkCancelAck Message................................. 27 
6.4 Private Buffer Resizing Messages ......................... 28 
6.4.1 ChRcvBuf Message (CRBH) ................................ 28 
6.4.2 ChRcvBufAck Message (CRBAH)............................. 28 
6.5 Socket Duplication Messages .............................. 29 
6.5.1 SuspComm Message ....................................... 29 
6.5.2 SuspCommAck Message .................................... 30 
7 Address Resolution using the SDP Port Mapper Protocol ..... 31 
7.1 Definitions for Address Resolution ....................... 32 
7.2 Port Mapper Service Requirements ......................... 32 
7.3 SDP Port Mapper Message Format ........................... 34 
7.4 Operational Overview ..................................... 38 
7.5 Lost Messages, Timeouts, and Other Error Cases............ 43 
7.5.1 PM Client Behavior ..................................... 43 
7.5.2 PM Server Behavior ..................................... 44 
8 Connection Setup......................................... 47 
8.1.1 iWARP Connection Setup ................................. 47 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  4 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

8.1.2 Aborting Connection Setup .............................. 50 
8.2 Connection Teardown...................................... 50 
8.2.1 Graceful Close ......................................... 50 
8.2.2 Abortive Close ......................................... 52 
9 Data Transfer Mechanisms ................................. 54 
9.1 Bcopy ................................................... 55 
9.2 Read Zcopy .............................................. 56 
9.3 Write Zcopy ............................................. 61 
9.4 Transaction Mechanism.................................... 63 
9.5 Miscellaneous Data Transfer Issues ....................... 65 
9.5.1 Detecting Stale SinkAvail Advertisements ................ 65 
9.5.2 Mechanisms for Forcing Bcopy............................ 66 
9.5.3 Processing Out-Of-Band Data............................. 68 
9.5.4 SrcAvail Revocation .................................... 69 
9.5.5 SinkAvail Revocation ................................... 70 
9.5.6 Buffering ULP Payload .................................. 71 
10 Private Buffer Management ................................ 73 
10.1 SDP Message Ordering ................................... 73 
10.2 Send Credit Calculation ................................ 74 
10.3 Initialization of Send Credit........................... 74 
10.4 Gratuitous Update of the Remote Peer’s Send Credit ...... 74 
10.5 Use of Send Credits .................................... 74 
10.6 Receive Buffer Resizing ................................ 75 
10.6.1 Conflict Resolution................................... 77 
10.6.2 Flow Control Issues During Resizing ................... 77 
11 SDP Flow Control Modes ................................... 78 
11.1 Buffered Mode .......................................... 80 
11.2 Combined Mode .......................................... 80 
11.3 Pipelined Mode ......................................... 81 
12 SDP Mode Transitions ..................................... 83 
12.1 Transition from Combined Mode to Buffered Mode .......... 84 
12.2 Transition from Buffered Mode to Combined Mode .......... 85 
12.3 Transition From Combined Mode to Pipelined Mode ......... 85 
12.4 Transition From Pipelined Mode to Combined Mode ......... 86 
12.5 State Mode Transition Summary........................... 87 
13 Socket Duplication....................................... 92 
13.1 Implementing Socket Duplication......................... 92 
13.1.1 Socket Duplication Procedure .......................... 93 
13.1.2 Conflict Resolution................................... 94 
13.2 SDP Managed Failover ................................... 94 
14 SDP Usage of iWARP and LLP Features ...................... 96 
14.1 iWARP Message Requirements ............................. 96 
14.2 Solicited Events ....................................... 96 
14.3 Keepalive Messages ..................................... 97 
15 Security Considerations .................................. 98 
15.1 Spoofing............................................... 98 
15.2 Denial of Service (DOS) ................................ 98 
15.2.1 Port Flooding ........................................ 98 
15.2.2 Resource Consumption by an Idle Process ............... 99 
16 IANA Considerations..................................... 100 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  5 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

17 References ............................................. 101 
17.1 Normative References .................................. 101 
17.2 Informative References ................................ 101 
18 Author’s Addresses...................................... 102 
19 Acknowledgments......................................... 103 
20 Full Copyright Statement ................................ 106 
 

Table of Figures 

Figure 1 SDP Relation to iWARP Layers........................... 6 
Figure 2 Base Sockets Direct Header............................ 13 
Figure 3 SDP Message Definitions .............................. 15 
Figure 4 BSDH Flags........................................... 15 
Figure 5 Hello Header ......................................... 17 
Figure 6 HelloAck Header ...................................... 19 
Figure 7 SrcAvail Header (SrcAH) .............................. 22 
Figure 8 SinkAvail Header (SinkAH) ............................ 23 
Figure 9 RdmaWrCompl Header (RWCH) ............................ 25 
Figure 10 RdmaRdCompl Header (RRCH)............................ 25 
Figure 11 ModeChange Header (MCH) ............................. 26 
Figure 12 MCH Mode Values ..................................... 27 
Figure 13 ChRcvBuf Header (CRBH) .............................. 28 
Figure 14 ChRcvBufAck Header (CRBAH)........................... 28 
Figure 15 SuspComm Header (SuspCH) ............................ 29 
Figure 16 Port Mapper Protocol Entities........................ 31 
Figure 17 Port Mapper Message Format........................... 35 
Figure 18 Three-way Port Mapper Message Exchange ............... 41 
Figure 19 Two-way Port Mapper Message Exchange ................. 43 
Figure 20 Ladder Diagram for Bcopy Mechanism................... 55 
Figure 21 Ladder Diagram for Read Zcopy Mechanism .............. 60 
Figure 22 Ladder Diagram for Write Zcopy Mechanism ............. 63 
Figure 23 Ladder Diagram of Transaction Mechanism .............. 64 
Figure 24 Mode Characteristics ................................ 79 
Figure 25 Summary of Permitted Actions By Mode Pair ............ 80 
Figure 26 Mode State Machine for a Half-Connection ............. 83 
Figure 27 Mode Master ......................................... 84 
Figure 28 Data Source Transition from Pipelined to Combined Mode 88 
Figure 29 Data Sink Transition from Pipelined to Combined Mode.. 89 
Figure 30 Data Source Mode Transition Events................... 90 
Figure 31 Data Sink Mode Transition Events ..................... 91 

 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

4 Introduction 

This document defines a transport layer protocol called Sockets 
Direct Protocol (SDP) for iWARP over TCP. 

SDP is a byte-stream transport protocol that closely mimics TCP's 
stream semantics. SDP utilizes iWARP's advanced protocol offload, 
kernel bypass, and zero copy capabilities. SDP allows existing 
sockets applications to gain the performance benefits of RDMA for 
data transfers without requiring any modifications to the 
application. Because of this, SDP can have lower CPU and memory 
bandwidth utilization when compared to conventional implementations 
of sockets over TCP, while preserving the familiar byte-stream 
oriented semantics upon which most current network applications 
depend. 

The SDP implementation described in this specification is intended 
to emulate sockets semantics over TCP, and to be layered on iWARP 
mapped over TCP. Support for emulating SCTP sockets semantics may be 
done in a future specification. This layering is shown in Figure 1. 

               +-------------------------------------+ 
               |                                     | 
               |       Sockets Direct Protocol       | 
               |                                     | 
               +-------------------------------------+ <---+ 
               |                                     |     | 
               |           RDMA Protocol             |     | 
               |                                     |     | 
               +-------------------------------------+     | 
               |                                     |     | 
               |           DDP Protocol              |     | iWARP 
               |                                     |     | 
               +-------------------------------------+     | 
               |                                     |     | 
               |                MPA                  |     | 
               |                                     |     | 
               +-------------------------------------+ <---+ 
               |                                     | 
               |                TCP                  | 
               |                                     | 
               +-------------------------------------+ 
 

Figure 1 SDP Relation to iWARP Layers 

 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  7 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

4.1 Architectural Goals 

SDP has the following architectural goals: 

* Maintain traditional sockets SOCK_STREAM semantics as 
commonly implemented over TCP/IP. Some specific issues that 
are addressed include: 

* Graceful close, including half-closed sockets 

* Ability to use TCP port space 

* IP addressing (IPv4 or IPv6) 

* Connecting/accepting connect model 

* Out-of-band (OOB) data  

* Support for common socket options 

* Support for byte-streaming over a message passing protocol 

* Capable of supporting kernel bypass data transfers 

* Capable of supporting Zero-copy data transfers from send 
upper-layer-protocol (ULP) buffers to receive ULP 
Buffers. 

This specification focuses specifically on the wire protocol, finite 
state machine, and packet semantics. Operating system specific 
issues and other implementation-specific issues are outside the 
scope of this specification, including application programming 
interfaces (APIs), ULP completion mechanisms, kernel bypass 
capabilities, etc. These issues are left up to each implementation. 

Note that SDP only supports SOCK_STREAM semantics (i.e., byte-
stream), not SOCK_DGRAM (i.e., datagram) semantics. In addition, the 
socket emulation description assumes that the desired behavior is to 
emulate SOCK_STREAM with TCP semantics.  

4.2 Overview of the Byte-Stream Protocol 

SDP’s ULP interface is a byte-stream interface that is layered on 
top of iWARP’s message-oriented transfer model. The mapping of the 
byte-stream protocol to iWARP Message-oriented semantics is designed 
to enable ULP data to be transferred by one of two methods - through 
intermediate Private Buffers (Buffer-copy, also referred to as 
Bcopy) or directly between ULP Buffers (Zero-copy, also referred to 
as Zcopy). 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  8 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

A mix of iWARP Send and RDMA mechanisms are used to transfer ULP 
data. Zcopy uses iWARP RDMA Reads or Writes, transferring data 
between RDMA Buffers. Bcopy uses iWARP Sends, transferring data 
between send buffers and receive Private Buffers. An implementation 
is expected, but not required, to have RDMA Buffers be ULP Buffers, 
enabling the RDMA path to perform a true Zero-copy. An 
implementation is expected, but not required, to use the receive 
Private Buffer pool to buffer data and eventually copy the data from 
the receive Private Buffer pool into the receive ULP Buffer. An 
implementation may choose to implement different ULP Buffering 
semantics. 

SDP has two types of buffers: 

* Private Buffers - used for transmission of all SDP Messages 
and ULP data that is to be copied into the receive ULP 
Buffer. The Bcopy Data Transfer Mechanism is used to perform 
the copy of SDP Messages and ULP data into these buffers. 

* RDMA Buffers - used when performing Zcopy data transfers. 
ULP data is intended to be transferred (using RDMA Writes or 
RDMA Reads) directly from the Data Source's ULP Buffer to 
the Data Sink's ULP Buffer. 

The policy that controls when to use Private Buffers versus RDMA 
Buffers is outside the scope of this specification. An 
implementation-dependent parameter defined as the Bcopy Threshold is 
used to abstractly define the results of the policy decision.  

As noted in the introduction, SDP is a wire protocol for iWARP over 
TCP. Thus, when this specification uses the term "send" in relation 
to an SDP message, it refers to when the iWARP message has been 
sent. The end-to-end acknowledgement may or may not have occurred. 
This implies that when an SDP message is sent, there is no guarantee 
that the Remote Peer has actually received the message. When this 
specification uses the term "receive" in relation to an SDP message, 
it refers to when the SDP protocol layer has been handed the message 
by the LLP.   

   

 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  9 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

5 Definitions 

Accepting Peer - The peer that sent the reply to the connection 
establishment request during connection establishment.  

Bcopy - See Buffer-copy.  

Buffered Mode - One of three modes that can be used for an SDP half-
connection. This Mode uses the Bcopy Data Transfer Mechanism 
exclusively. When used in the context of the Port Mapper 
Protocol, the Accepting Peer can also be a Port Mapper Service 
Provider (PMSP) acting on behalf of the Accepting Peer. 

Bcopy Threshold - A locally defined threshold existing separately 
for each peer of a half-connection, which helps the peer 
determine whether it will attempt to use the Bcopy Data Transfer 
Mechanism versus the Zcopy Data Transfer Mechanism to transfer a 
given size ULP Buffer. 

Buffer-copy - A Data Transfer Mechanism where the transfer of ULP 
payload between peers is done through an SDP-managed receive 
Private Buffer pool. The received ULP data may require a copy 
into the receive ULP Buffer. 

Combined Mode - One of three modes that can be used for an SDP half-
connection. This Mode enables the use of the Bcopy and Read 
Zcopy Data Transfer Mechanisms. 

Connecting Peer - The peer that sent the connection establishment 
request. When used in the context of the Port Mapper Protocol, a 
Connecting Peer can also be a management agent acting on behalf 
of the Connecting Peer. 

Connection Context - The endpoint state needed for the LLP and the  
iWARP protocol suite. This might include protocol control state, 
mappings from STags to buffers, queues for transmission and 
reception of data, etc. 

Controlling Address Space - The address space in which the socket 
currently exists. This is relevant for socket duplication where 
a Non-Controlling Address Space may request control of the 
socket. 

Data Sink - The peer receiving ULP payload. The Data Sink can be 
required to both send and receive iWARP and/or SDP Messages to 
complete a Data Transfer Mechanism. 

Data Source - The peer sending ULP payload. The Data Source can be 
required to both send and receive iWARP and/or SDP Messages to 
complete a Data Transfer Mechanism. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  10 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Data Transfer Mechanism - A sequence of iWARP and/or SDP Messages 
(with or without ULP payload) used to transfer data from a Data 
Source to a Data Sink with flow control. Four Data Transfer 
Mechanisms are defined - Buffer-copy (Bcopy), Zero-copy with 
RDMA Write (Write Zcopy), Zero-copy with RDMA Read (Read Zcopy), 
and Transaction. 

Flow Control Mode - The Mode of the half-connection that determines 
which Data Transfer Mechanisms may be used. Three Flow Control 
Modes are defined - Buffered, Pipelined, and Combined. 

In-Process - An SDP Message sequence is In-Process if it is actively 
being worked on. For example, if a SrcAvail Message is In-
Process, RDMA Reads may have been issued or completed, but a 
RdmaRdCompl Message or SendSm Message has not been sent. See 
also Unprocessed and Processed. 

Inbound RDMA Read Queue Depth (IRD) - The Inbound RDMA Read Queue 
Depth is the number of simultaneous outstanding inbound RDMA Read 
Requests. 

Incomplete - See In-Process. 

LLP - see Lower Layer Protocol. 

Lower Layer Protocol - The protocol layer(s) beneath the protocol 
layer currently being referenced. For example, the LLP 
underneath SDP is the iWARP protocol family after the Connection 
Management sequence (see [RDMAP]) has been completed. Before the 
Connection Management sequence has been completed, the LLP is 
expected to be TCP. 

LLP Connection - Corresponds to an LLP transport-level connection 
between peer LLP layers on two nodes. For SDP, the LLP 
Connection is initially established in Streaming Mode, and then 
iWARP communication is enabled. 

LLP Stream - Corresponds to a single LLP transport-level Stream 
between peer LLP layers. One or more LLP Streams may map to a 
single transport-level LLP connection. For transport protocols 
that support multiple Streams per connection (e.g. SCTP), a LLP 
Stream corresponds to one transport-level Stream. 

Message - See SDP Message.  

Mode - See Flow Control Mode. 

Mode Master - The side of an SDP half-connection that can initiate a 
Mode transition by sending a ModeChange Message. This is either 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  11 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

the Data Source or the Data Sink, depending upon the Flow 
Control Mode. 

Mode Slave - The side of an SDP half-connection that reacts to Mode 
changes. The Mode Slave can advise the Mode Master to change 
modes (by using SendSm Messages or setting the REQ_PIPE flag in 
the BSDH), but it cannot force a Mode change. This is either the 
Data Source or the Data Sink, depending upon the Flow Control 
Mode. 

Non-Controlling Address Space - An address space that does not 
currently have control of the socket. See Controlling Address 
Space. 

OOB - See Out-Of-Band Data. 

Out-Of-Band Data - Out-of-Band Data is a single byte of data in the 
data stream whose handling should be expedited. 

Outbound RDMA Read Queue Depth (ORD) - The number of simultaneous 
outstanding RDMA Read Requests that can be issued on any given 
connection. 

Pipelined Mode - One of three modes that can be used for an SDP 
half-connection. This Mode enables the use of the Bcopy, Read 
Zcopy, Write Zcopy, and Transaction Data Transfer Mechanisms. 

Private Buffer - Buffers owned by SDP and not exposed to the ULP. 
Receive Private Buffers are used for reception of all SDP 
Messages and ULP data transfer using the Bcopy or Transaction 
Data Transfer Mechanisms. All receive Private Buffers must be at 
least the current advertised size, and are posted to the iWARP 
Receive Queue. 

Processed - An SDP Message sequence has been completed by sending 
the last SDP Message of the sequence. Note that the completing 
SDP Message may not have been received. For example, a SinkAvail 
advertisement is said to have been Processed when the 
corresponding RdmaWrCompl Message has been sent. See also 
Unprocessed and In-Process. 

RDMA Buffer - A buffer that is exposed by the SDP protocol for RDMA 
access. It is used by the Write Zcopy, Read Zcopy, and 
Transaction Data Transfer Mechanisms. 

Receiver - Destination of an SDP Message. 

SDP Message - An iWARP Send Type Message that contains an SDP Base 
Sockets Direct Header (BSDH). This specifically does not include 
iWARP RDMA Write and RDMA Read Messages.  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  12 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Sender - Source of an SDP Message. 

Streaming Mode - The term used for the transport used to transmit 
messages that are exchanged before the iWARP protocol has been 
established on the LLP Stream. The SDP Hello Message is 
transferred using Streaming Mode. 

Transaction - A Data Transfer Mechanism that collapses a Data 
Message and a SinkAvail Message into a single SDP Message. 

ULP - Upper Layer Protocol. 

ULP Buffer - Buffers owned by and visible to the ULP. A ULP Buffer 
may serve as an RDMA source buffer, an RDMA sink buffer, or a 
send buffer. 

Unprocessed - An SDP Message is Unprocessed if it has been sent, and 
possibly received, but it has not been operated on. For example, 
a SinkAvail Message is Unprocessed if it has been sent by the 
Data Sink, received by the Data Source, but no RDMA Writes have 
begun. In addition, processing of flow control information by 
the receiver may have been done. See also In-Process and 
Processed. 

WrapSubtract - WrapSubtract represents a function that subtracts the 
second argument (arg2) from the first argument (arg1). Both 
arguments are unsigned integers that wrap from a value of 
0xFFFFFFFF to 0x0. Mathematical operations on wrapping unsigned 
integers can be done using a variety of methods, including 
methods defined in RFC1982. The following equation is an example 
implementation of the function that casts the unsigned integers 
into two’s complement integers, and then takes the absolute 
value of the result: 

      result = abs((int)arg1 - (int)arg2) 

Zcopy - See Zero-copy. 

Zero-copy - Three Data Transfer Mechanisms (Read Zcopy, Write Zcopy, 
and Transactions), where the transfer of ULP payload between 
peers is done directly into the ULP Buffer using an RDMA Read or 
RDMA Write, thus avoiding a Buffer-copy on receive. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  13 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

6 SDP Message Formats 

Sockets Direct Protocol defines several types of SDP Messages to 
transfer data and control the state of a connection. Each SDP 
Message MUST contain a Base Sockets Direct Header (BSDH). Some SDP 
Message types may also contain an extended header and/or ULP 
payload. The extended header (if present) MUST immediately follow 
the BSDH. The ULP payload (if present) MUST immediately follow the 
headers (BSDH and extended header, if any). 

All SDP Message headers MUST use network byte order (i.e. big-endian 
byte ordering). 

6.1 Base Sockets Direct Header (BSDH) 

All SDP Messages contain the Base Sockets Direct Header, as 
specified in this chapter.   

The BSDH format MUST be as defined in Figure 2 Base Sockets Direct 
Header. 

      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |         Bufs                  |     Flags     |      MID      | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                            Len                                | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                            MSeq                               | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                            MSeqAck                            | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 2 Base Sockets Direct Header 

6.1.1 Message Identifier (MID) 

The MID specifies the type of the SDP Message. The type of SDP 
Message indicates whether an extension header is present. 

Figure 3 MUST be used to define the MID parameter in the BSDH, the 
type of SDP Message, and the extended headers and payload that 
follow the BSDH for a specific SDP Message. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  14 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

     +----------+-----------------+----------------+-----------------+ 
     | MID[7-0] | Message Name    | Extended Header| Packet Contents | 
     |          |                 | following the  | following the   | 
     |          |                 | Base SDP Header| Extended Header | 
     |          |                 |                | (if any)        | 
     +----------+-----------------+----------------+-----------------+ 
     | 00000000 | Hello           | HH             | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00000001 | HelloAck        | HAH            | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00000010 | DisConn         | none           | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00000011 | AbortConn       | none           | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00000100 | SendSm          | none           | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00000101 | RdmaWrCompl     | RWCH           | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00000110 | RdmaRdCompl     | RRCH           | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00000111 | ModeChange      | MCH            | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00001000 | SrcAvailCancel  | none           | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00001001 | SinkAvailCancel | none           | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00001010 | SinkCancelAck   | none           | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00001011 | ChRcvBuf        | CRBH           | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00001100 | ChRcvBufAck     | CRBAH          | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00001101 | SuspComm        | SuspCH         | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00001110 | SuspCommAck     | none           | none            | 
     +----------+-----------------+----------------+-----------------+ 
     | 00001111 | Reserved        | n/a            | n/a             | 
     +----------+-----------------+----------------+-----------------+ 
     | 00010000-|                 |                |                 | 
     | 00111111 | Reserved        | n/a            | n/a             | 
     +----------+-----------------+----------------+-----------------+ 
     | 01000000-|                 |                |                 | 
     | 01111111 | Experimental    | n/a            | opt. Payload    | 
     +----------+-----------------+----------------+-----------------+ 
     | 10000000-|                 |                |                 | 
     | 11111100 | Reserved        | n/a            | n/a             | 
     +----------+-----------------+----------------+-----------------+ 
     | 11111101 | SinkAvail       | SinkAH         |opt. ULP payload | 
     +----------+-----------------+----------------+-----------------+ 
     | 11111110 | SrcAvail        | SrcAH          |opt. ULP payload | 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  15 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

     +----------+-----------------+----------------+-----------------+ 
     | 11111111 | Data            | none           |opt. ULP payload | 
     +----------+-----------------+----------------+-----------------+ 
 

Figure 3 SDP Message Definitions 

Reserved MID values may be assigned in future versions of the 
protocol. Experimental values SHOULD NOT be used for permanent 
assignment. 

6.1.2 Flags 

Figure 4 MUST be used to define the BSDH Flags field. 

    +-----------+----------+---------------------------------------+ 
    | Bit       |          |                                       | 
    | Position  | Name     | Description                           | 
    +-----------+----------+---------------------------------------+ 
    | 0         | OOB_PRES | Out-Of-Band Data is present           | 
    +-----------+----------+---------------------------------------+ 
    | 1         | OOB_PEND | Out-Of-Band Data is pending           | 
    +-----------+----------+---------------------------------------+ 
    | 2         | REQ_PIPE | Request change to Pipelined Mode      | 
    +-----------+----------+---------------------------------------+ 
    | 3-7       | reserved | Transmitted as zero and not checked   | 
    |           |          | at receiver                           | 
    +-----------+----------+---------------------------------------+ 
 

Figure 4 BSDH Flags 

The SDP implementation MUST set the OOB_PRES bit to one in a Data 
Message when the last byte of the ULP payload in the SDP Message is 
OOB data. The OOB_PRES bit is used only in Data Messages and MUST be 
zero in all other SDP Message types. The Data Message MAY also 
contain normal ULP payload data before the OOB data. See section 
9.5.3 Processing Out-Of-Band Data on page 68. 

If the OOB_PEND bit is set to one, then Out-Of-Band data has been 
sent by the ULP. This bit MAY be set to one in any SDP Message. The 
actual Out-Of-Band data is not required to be in the current SDP 
Message. See section 9.5.3 Processing Out-Of-Band Data on page 68 
for details on setting and using this bit. 

The REQ_PIPE bit is a hint from the Mode Slave to the Mode Master to 
convey which Flow Control Mode the Mode Slave would prefer the Mode 
Master to use. If the Mode Slave prefers to be in Combined Mode, it 
should set the bit to zero. If the Mode Slave prefers to be in 
Pipelined Mode, it should set the bit to one. The Mode Master is NOT 
REQUIRED to follow the recommendation from the Mode Slave. The Mode 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  16 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Master MUST ignore the REQ_PIPE bit if the current Flow Control Mode 
for this half-connection is Buffered Mode. 

The Mode Slave MUST only indicate a Flow Control Mode recommendation 
using the REQ_PIPE bit (i.e., by setting the bit to either zero or 
one) in an RdmaRdCompl or RdmaWrCompl Message. The Mode Slave MUST 
set REQ_PIPE to zero in all other messages. The REQ_PIPE bit MUST 
only be examined by the Mode Master in an RdmaRdCompl or RdmaWrCompl 
Message header. The Mode Master MUST NOT check the REQ_PIPE bit in 
any other SDP Message. 

Note that the RdmaRdCompl Message is generated by the Data Sink, and 
thus setting the REQ_PIPE bit applies to that half-connection. 
REQ_PIPE in an RdmaWrCompl Message applies to the opposite half-
connection. (i.e., the Data Source for this half-connection is 
currently the Mode Slave in the opposite half-connection). 

6.1.3 Buffers (Bufs) 

The number of Private Buffers that were currently posted after the 
last SDP Message was received by the Local Peer, in units of Private 
Buffers. More precisely, Bufs MUST equal the total number of Private 
Buffers posted over the lifetime of the connection minus the number 
of SDP Messages received over the lifetime of the connection. A 
maximum of 65535 (2^16-1) buffers may be posted at any one time. 

6.1.4 Length (Len) 

SDP Message length in bytes. 

The SDP Message Len MUST be equal to the sum of the sizes of the 
BSDH, extended header (if present), and ULP payload (if present). 

6.1.5 Message Sequence Number (MSeq) 

The first SDP Message sent after SDP connection establishment (i.e., 
the Hello and HelloAck Messages) MUST set the MSeq value to zero. 
Each successive SDP Message MUST increase the MSeq value by one, and 
the value MUST wrap to zero after reaching 0xFFFFFFFF. 

6.1.6 Message Sequence Number Acknowledgement (MSeqAck) 

MSeqAck MUST be set to the sequence number of the last SDP Message 
received by the Local Peer. See section 9.5.4 SrcAvail Revocation on 
page 69 for additional constraints. 

Until an SDP Message from the Remote Peer is received by the Local 
Peer, the Local Peer MUST transmit a MSeqAck value of zero. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  17 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

6.2 Connection Management Messages 

SDP connection setup MUST use the Hello and HelloAck Messages to 
establish an SDP connection. In addition to establishing the 
connection, these SDP Messages also set up SDP parameters such as 
the initial credits for the receive Private Buffers, local IRD, and 
local ORD. See section 8 Connection Setup on page 47 for additional 
information on how these SDP Messages are used to establish a 
connection. 

SDP connection teardown uses the LLP disconnect mechanisms, plus the 
DisConn and AbortConn Messages to emulate TCP connection teardown 
semantics. See section 8.2 Connection Teardown on page 50 for more 
information. 

6.2.1 Hello Message (HH) 

The Hello Message MUST contain only a BSDH and a Hello Header(HH). 
See section 8 Connection Setup on page 47. 

The Hello Header format MUST be as defined in Figure 5. 

      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |         MaxAdverts            |     Rsvd      | MinV  | MajV  | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                          DesRemRcvSz                          | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                          LocalRcvSz                           | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |           LocIRD              |            LocORD             | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 

Figure 5 Hello Header 

 

The Hello Message BSDH fields MUST be set as follows: 

* MID = Hello. 

* Len = size of the BSDH, plus the size of the HH. 

* Flags = 0x0. 

* Bufs = see 8 Connection Setup on page 47 and section 10.3 
Initialization of Send Credit on page 74. 

* MSeq = set to zero and not checked on receive. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  18 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

* MSeqAck = set to zero and not checked on receive. 

6.2.1.1 Major Protocol Version Number (MajV) - 4 Bits 

For this version of the specification, MajV MUST be set to 0.  

The Accepting Peer MUST terminate the connection if MajV in the HH 
does not match its locally supported value(s). 

6.2.1.2 Minor Protocol Version Number (MinV) - 4 Bits 

For this version of the specification, MinV MUST be set to 1. 

The Accepting Peer should not terminate the connection if the only 
reason is that MinV in the HH does not match its local value. This 
enables future protocol extensions that are upwardly compatible. 

6.2.1.3 Maximum Advertisements (MaxAdverts) - 16 Bits 

The maximum number of concurrent Zcopy advertisements that can be 
outstanding at the local connection at any one time. This includes 
SrcAvail advertisements for data transfer from the Remote Peer to 
the Local Peer and SinkAvail advertisements for data transfer from 
the Local Peer to the Remote Peer. MaxAdverts MUST be between 1 and 
2^16-1, inclusive. 

The Accepting Peer MUST terminate the connection if MaxAdverts of 
the HH is zero. 

6.2.1.4 Desired Remote Receive Size (DesRemRcvSz) - 32 Bits 

DesRemRcvSz is a hint to the Remote Peer specifying the Local Peer's 
desired size for the Remote Peer’s receive Private Buffers, in units 
of bytes (maximum = 2^31 bytes). This field is usually set to the 
initial size of the local send buffers (assuming the send buffers 
are all the same size). The Remote Peer SHOULD take this value into 
consideration when choosing the size of its receive Private Buffers, 
but it is free to select a different size. 

6.2.1.5 Local Receive Size (LocalRcvSz) - 32 Bits 

Initial size of the local receive Private Buffers, in units of bytes 
(maximum = 2^31 bytes). 

6.2.1.6 Local IRD (LocIRD) - 16 Bits 

LocIRD MUST be set to less than or equal to the depth of the 
Connection Context's IRD at the Local Peer and MUST be greater than 
zero. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  19 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

6.2.1.7 Local ORD (LocORD) - 16 Bits 

LocORD MUST be set to less than or equal to the depth of the 
Connection Context's ORD at the Local Peer and MUST be greater than 
zero. 

6.2.1.8 Rsvd 

This field is reserved for future use. These bits MUST be 
transmitted as zeroes and MUST NOT be checked on receive.  

6.2.2 HelloAck Message (HAH) 

The HelloAck (Hello Acknowledgement) Message MUST contain only a 
BSDH and a HelloAck Header (HAH). The HelloAck Message contains a 
subset of the information sent in the Hello Message.  See section 8 
Connection Setup on page 47.  

The HelloAck Header format MUST be as defined in Figure 6. 
 
      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |              MaxAdverts       |      Rsvd     |  MinV | MajV  | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                           ActRcvSz                            | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |            LocIRD             |            LocORD             | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 

Figure 6 HelloAck Header 

 

The HelloAck Message BSDH fields MUST be set as follows: 

* MID = HelloAck. 

* Len = size of the BSDH, plus the size of the HAH. 

* Flags = 0x0. 

* Bufs = see section 8 Connection Setup on page 47 and section 
10.3 Initialization of Send Credit on page 74. 

* MSeq = set to zero and not checked on receive. 

* MSeqAck = set to zero and not checked on receive. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  20 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

6.2.2.1 Major Protocol Version Number (MajV) - 4 Bits 

For this version of the specification, MajV MUST be set to 0.  

The Connecting Peer MUST terminate the connection if MajV in the HAH 
does not match the value that the Connecting Peer supplied in the 
HH. 

6.2.2.2 Minor Protocol Version Number (MinV) - 4 Bits 

For this version of the specification, MinV MUST be set to 1. 

The Connecting Peer should not terminate the connection if the only 
reason is that MinV in the HAH does not match its local value. This 
enables future protocol extensions that are upwardly compatible. 

6.2.2.3 Maximum Advertisements (MaxAdverts) - 16 Bits 

The maximum number of concurrent Zcopy advertisements that can be 
outstanding to the Local Peer at any one time. This includes 
SrcAvail advertisements sent to the Local Peer for data transfer 
from the Remote Peer to the Local Peer and SinkAvail advertisements 
for data transfer from the Local Peer to the Remote Peer. MaxAdverts 
MUST be between 1 and 2^16-1, inclusive. 

The Connecting Peer MUST terminate the connection attempt if 
MaxAdverts of the HAH is set to zero. 

6.2.2.4 Actual Receive Size (ActRcvSz) - 32 Bits 

The initial size of the local receive Private Buffers, in units of 
bytes (maximum = 2^31 bytes). 

6.2.2.5 Local IRD (LocIRD) - 16 Bits 

LocIRD MUST be set to less than or equal to the depth of the 
Connection Context's IRD at the Local Peer and MUST be greater than 
zero. 

6.2.2.6 Local ORD (LocORD) - 16 Bits 

LocORD MUST be set to less than or equal to the depth of the 
Connection Context's ORD at the Local Peer and MUST be greater than 
zero. 

6.2.2.7 Rsvd 

This field is reserved for future use. These bits MUST be 
transmitted as zeroes and MUST NOT be checked on receive.  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  21 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

6.2.3 DisConn Message 

The DisConn (Disconnect Connection) Message informs the Remote Peer 
that the local ULP will not be sending any more data on this 
connection, and that the ULP has requested graceful teardown of the 
socket in the send direction. This is functionally equivalent to TCP 
sending a FIN packet. See section 8.2 Connection Teardown on page 
50.  

The DisConn Message MUST contain only a BSDH. It contains no ULP 
payload. 

6.2.4 AbortConn Message 

The AbortConn (Abort Connection) Message tells the Remote Peer to 
ignore an earlier DisConn Message (if received) and to consider 
socket teardown as abortive. This SDP Message should be sent only if 
a DisConn Message has been sent earlier. AbortConn is functionally 
equivalent to TCP setting the RST bit to reset a connection. See 
section 8.2 Connection Teardown on page 50. 

The AbortConn Message MUST contain only a BSDH. It contains no ULP 
payload. 

6.3 Data Transfer and Flow Control Messages 

6.3.1 Data Message 

The Data Message MUST contain a BSDH and MAY contain ULP payload. 

The Data Message is normally used to send ULP payload. A Data 
Message without ULP payload is a gratuitous credit update. Usually a 
gratuitous update is used by the Local Peer to update the Remote 
Peer that there are additional receive Private Buffers available. A 
gratuitous credit update is done by setting the Bufs field in the 
BSDH as described in Section 10.4 Gratuitous Update of the Remote 
Peer’s Send Credit on page 74. 

The Data Message is one of three SDP Message types that MAY contain 
ULP data. The other types are SrcAvail and SinkAvail Messages. For 
more information on Data Messages, see section 9.1 Bcopy on page 55. 

6.3.2 SrcAvail Message (SrcAH) 

The SrcAvail (Data Source Available) Message is sent by the Data 
Source to the Data Sink to inform the latter of the availability of 
an RDMA Buffer that can be transferred through an RDMA Read 
operation.  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  22 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

This SrcAvail Message MUST contain a BSDH, a SrcAvail Header 
(SrcAH), and MAY include a copy of the initial portion of the send 
RDMA Buffer as payload of the SDP Message, depending upon the Flow 
Control Mode. (See section 9.2 Read Zcopy on page 56). 

The SrcAvail Header format MUST be as defined in Figure 7. 

      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                             Len                               | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                            STag                               | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                           VA(32-63)                           | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                           VA(0-31)                            | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  

Figure 7 SrcAvail Header (SrcAH) 

Note that the word order for VA is designed to be compatible with 
the InfiniBand Trade Association’s SDP [IBTA-SDP] definition of VA. 

6.3.2.1 Length (Len) - 32 bits 

Length is the size of the advertised buffer referenced by the STag 
and VA. 

The value of Len MUST be greater than zero and less than or equal to 
2^31 bytes. 

6.3.2.2 Virtual Address (VA) - 64 bits 

The VA defines the beginning of a buffer referenced by the STag, 
where VA corresponds to Tagged Offset (TO) for iWARP protocols. An 
SDP implementation MUST support any byte alignment for the VA start 
address. 

The buffer addressed by the RDMA VA MUST include the initial ULP 
data that was copied into the ULP payload of the SrcAvail Message 
(if any).  

6.3.2.3 STag - 32 bits 

The STag field MUST contain the STag corresponding to the VA, which 
the Data Sink MUST use when retrieving the data from the Data Source 
into the Data Sink's memory via an RDMA Read. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  23 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

6.3.3 SinkAvail Message (SinkAH) 

The SinkAvail (Data Sink Available) Message is sent by the Data Sink 
to the Data Source to inform the latter of the availability of an 
RDMA Buffer that can be filled through an RDMA Write operation. See 
section 9.3 Write Zcopy on page 61. 

The SinkAvail Header format MUST be as defined in Figure 8.      

      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                            Len                                | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                           STag                                | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                         VA (32-63)                            | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                         VA (0-31)                             | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                         NonDiscards                           | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 

Figure 8 SinkAvail Header (SinkAH) 

The SinkAvail Message MUST contain a BSDH and SinkAH, and MAY 
include some send data as ULP payload for data flow in the opposite 
direction. See section 9.4 Transaction Mechanism on page 63. 

Note that the word order for VA is designed to be compatible with 
the InfiniBand Trade Association’s SDP definition [IBTA-SDP] of VA. 

6.3.3.1 Length (Len) - 32 bits 

The Len field MUST contain the size of the advertised buffer 
referenced by the STag and VA. 

The value of Len MUST be greater than zero and less than or equal to 
2^31 bytes. 

6.3.3.2 Virtual Address (VA) - 64 bits 

The VA MUST contain the start address of the receive RDMA Buffer, 
where VA corresponds to Tagged Offset (TO) for iWARP protocols. The 
VA MAY start on any byte boundary. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  24 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

6.3.3.3 STag - 32 bits 

The STag field MUST contain the iWARP STag corresponding to the VA, 
which the Data Source MUST use when sending the data into the memory 
of the Data Sink via an RDMA Write. 

6.3.3.4 NonDiscards - 32 bits 

The NonDiscards field in the SinkAvail Message contains the Data 
Sink's current local value for NonDiscards. After connection setup, 
the Data Sink MUST initialize the local value for NonDiscards to 
zero. The Data Sink MUST increment its local value for NonDiscards 
when an SDP Message that is carrying ULP payload is received and the 
SDP Message did not cause the Data Sink to discard a previously sent 
SinkAvail Message. This count MUST wrap around to zero after 
reaching 0xFFFFFFFF.  

See section 9.5.1 Detecting Stale SinkAvail Advertisements on page 
65 for additional information. 

6.3.4 RDMA Messages 

SDP uses the iWARP RDMA Write and RDMA Read Messages to transfer 
Zero-copy data.  

6.3.5 SendSm Message 

The Data Source uses a SrcAvail Message to inform the Data Sink of 
data that can be transferred using RDMA. If the Data Sink is unable 
or unwilling to transfer this data using RDMA, it MUST use the 
SendSm (Send Small) Message to force the Data Source to send the 
data using the Bcopy Transfer Mechanism. See section 9.5.2 
Mechanisms for Forcing Bcopy on page 66. 

The SendSm Message MUST contain only a BSDH. It contains no ULP 
payload. 

6.3.6 RdmaWrCompl Message (RWCH) 

The RdmaWrCompl (RDMA Write Complete) Message is sent by the Data 
Source to inform the Data Sink of completion of an RDMA Write 
transfer. See section 9.3 Write Zcopy on page 61. 

The RdmaWrCompl Header format MUST be as defined in Figure 9.     



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  25 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                             Len                               | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 

     Figure 9 RdmaWrCompl Header (RWCH) 

The RdmaWrCompl Message MUST contain only a BSDH and a RWCH. 

In addition, the sender (Data Source) must indicate its preferred 
Flow Control Mode to the Data Sink via the REQ_PIPE bit in the Flags 
field of the BSDH in the RdmaWrCompl Message.  See section 6.1.2 
Flags on page 15 for a description of REQ_PIPE usage. 

 

6.3.6.1 Length (Len) - 32 Bits 

Len MUST contain the number of bytes transferred to the Data Sink's 
RDMA Buffer through RDMA Write(s) for the oldest outstanding 
SinkAvail. Len MAY be less than the size of the RDMA Buffer 
advertised by the Data Sink in the SinkAvail Message. 

6.3.7 RdmaRdCompl Message (RRCH) 

The RdmaRdCompl (RDMA Read Complete) Message is sent by the Data 
Sink to inform the Data Source of completion of an RDMA Read 
transfer. See section 9.2 Read Zcopy on page 56. 

The RdmaRdCompl Header format MUST be as defined in Figure 10. 

      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                             Len                               | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 

     Figure 10 RdmaRdCompl Header (RRCH) 

The RdmaRdCompl Message MUST contain only the BSDH and RRCH. 

In addition, the sender (Data Sink) must indicate its preferred Flow 
Control Mode to the Data Source via the REQ_PIPE bit in the Flags 
field of the BSDH in the RdmaRdCompl Message.  See section 6.1.2 
Flags on page 15 for a description of REQ_PIPE usage. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  26 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

6.3.7.1 Length (Len) - 32 Bits 

Len MUST contain the size (in bytes) transferred to the Data Sink’s 
RDMA Buffer through RDMA Read(s) for the oldest outstanding 
SrcAvail. Len MUST NOT include the portion of the buffer (if any) 
transferred within the SrcAvail Message as ULP data payload. If 
there is ULP data in the SrcAvail Message, Len MUST be less than the 
size of the Data Source RDMA Buffer advertised in the SrcAvail 
Message by exactly the number of ULP payload bytes included in the 
SrcAvail Message. 

6.3.8 ModeChange Message (MCH) 

The ModeChange Message is used to inform the Remote Peer of a Flow 
Control Mode transition. See section 11 SDP Flow Control Modes on 
page 78. 

The ModeChange Header format MUST be as defined in Figure 11.      

      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                         Rsvd                          |Mode |S| 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 

     Figure 11 ModeChange Header (MCH) 

The ModeChange Message MUST contain only a BSDH and MCH. 

The receiver of the ModeChange Message MUST change its send or 
receive Flow Control Mode to the new Mode specified in the 
ModeChange Message. 

6.3.8.1 S - 1 bit 

Specifies whether the peer receiving the ModeChange Message needs to 
change its Flow Control Mode for its send half-connection (S = 1) or 
receive half-connection (S = 0), for the connection over which the 
ModeChange Message was received. 

6.3.8.2 Mode - 3 bits 

The Mode field specifies the new Mode. 

The ModeChange MCH field value MUST be as defined in Figure 12. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  27 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

     +-------+-----------+----------------------------------------+ 
     | Mode  |           |                                        | 
     | Value | Name      | Description                            | 
     +-------+-----------+----------------------------------------+ 
     | 0     | BUFF_MODE | New Mode should be Buffered Mode       | 
     +-------+-----------+----------------------------------------+ 
     | 1     | COMB_MODE | New Mode should be Combined Mode       | 
     +-------+-----------+----------------------------------------+ 
     | 2     | PIPE_MODE | New Mode should be Pipelined Mode      | 
     +-------+-----------+----------------------------------------+ 
     | 3-7   | reserved  | Reserved value                         | 
     +-------+-----------+----------------------------------------+ 
 

     Figure 12 MCH Mode Values 

6.3.8.3 Rsvd - 28 Bits 

This field is reserved for future use. These bits MUST be 
transmitted as zeroes and MUST NOT be checked on receive.  

6.3.9 SrcAvailCancel Message 

The SrcAvailCancel (Data Source Available Cancel) Message is sent by 
the Data Source to ask the Data Sink to ignore all SrcAvail 
advertisements sent by the Data Source that are Unprocessed by the 
Data Sink. See section 9.5.4 SrcAvail Revocation on page 69. 

The SrcAvailCancel Message MUST contain only a BSDH. 

6.3.10 SinkAvailCancel Message 

The SinkAvailCancel (Data Sink Available Cancel) Message is sent by 
the Data Sink to ask the Data Source to ignore all SinkAvail 
advertisements sent by the Data Sink that are Unprocessed by the 
Data Source. See section 9.5.5 SinkAvail Revocation on page 70. 

The SinkAvailCancel Message MUST contain only a BSDH. 

6.3.11 SinkCancelAck Message 

The SinkCancelAck (Data Sink Available Cancel Acknowledgement) 
Message is sent by the Data Source in response to the 
SinkAvailCancel Message. The Data Source MUST send a SinkCancelAck 
after it has canceled all Unprocessed SinkAvail advertisements. See 
section 9.5.5 SinkAvail Revocation on page 70. 

The SinkCancelAck Message MUST contain only a BSDH. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  28 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

6.4 Private Buffer Resizing Messages 

6.4.1 ChRcvBuf Message (CRBH) 

The ChRcvBuf (Change Receive Private Buffer Size) Message is sent by 
the Data Source to the Data Sink to request a change in the size of 
the latter’s receive Private Buffers. See section 10.6 Receive 
Buffer Resizing on page 75. 

The ChRcvBuf Message MUST contain only a BSDH and a CRBH. 

The ChRcvBuf Header format MUST be as defined in Figure 13. 

      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                             DesSz                             | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 

     Figure 13 ChRcvBuf Header (CRBH)     

6.4.1.1 Desired Size (DesSz) - 32 bits 

 Desired size (in bytes) of the Data Sink’s receive Private Buffers. 

6.4.2 ChRcvBufAck Message (CRBAH) 

The ChRcvBufAck (Change Receive Private Buffer Size Acknowledgement) 
Message is sent in response to the ChRcvBuf Message. The ChRcvBufAck 
Message informs the Data Source of the new size of the receive 
Private Buffers. See section 10.6 Receive Buffer Resizing on page 
75. 

The ChRcvBufAck Message MUST contain only a BSDH and a CRBAH. 

The ChRcvBufAck Header format MUST be as defined in Figure 14. 

      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                             ActSz                             | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 

     Figure 14 ChRcvBufAck Header (CRBAH) 

6.4.2.1 Actual Size (ActSz) - 32 bits 

This is the actual or new size (in bytes) of the local receive 
Private Buffers. The actual size MAY be the same as the size prior 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  29 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

to receipt of the ChRcvBuf Message if the protocol implementation 
does not wish to resize its receive Private Buffers. 

6.5 Socket Duplication Messages 

6.5.1 SuspComm Message 

The SuspComm (Suspend Communication) Message is sent to ask the 
Remote Peer to suspend communication as part of preparing the socket 
for duplication. See section 13 Socket Duplication on page 92. 

The SuspComm Message MUST contain only a BSDH and a SuspCH. 

The SuspComm Header format MUST be as defined in Figure 15.  

      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                           Constant1                           | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |    Destination TCP Port       |         Constant2             | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 

     Figure 15 SuspComm Header (SuspCH)  

To facilitate interoperability and simplified bridging between SDP 
over iWARP and SDP as defined by the InfiniBand Trade Association 
[IBTA-SDP], the SuspComm header defines a 64-bit field composed of 
three components: a 16-bit TCP port and two constants.  The two 
constants when concatenated together [Constant1, Constant2] form a 
48-bit constant value that corresponds to the 48-bit constant of the 
SuspComm header defined in the InfiniBand Trade Association SDP 
specification. 

6.5.1.1 Destination TCP Port - 16 Bits 

The Destination TCP port that the Remote Peer should try to connect 
with to re-establish the connection with the Local Peer after 
duplication has completed. 

6.5.1.2 Constant1 - 32 bits 

Constant1 MUST be set to 0x0. 

6.5.1.3 Constant2 - 16 bits 

Constant2 MUST be set to 0x1. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  30 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

6.5.2 SuspCommAck Message 

The SuspCommAck (Suspend Communication Acknowledgement) Message is 
sent in response to the SuspComm Message. This SDP Message informs 
the peer that all communication has been suspended as requested by 
the peer in its SuspComm Message. See section 13 Socket Duplication 
on page 92. 

The SuspCommAck Message MUST contain only a BSDH. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  31 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

7 Address Resolution using the SDP Port Mapper Protocol 

A key objective of SDP is to transparently operate underneath 
SOCK_STREAM applications. SDP is intended to allow an application to 
advertise a service using its application-defined listen port and 
transparently connect using an SDP RDMA-capable listen port. 
However, if the SDP Connecting Peer does not know the port and IP 
address to use when creating a connection for SDP communication, it 
must resolve the TCP port and IP address used for traditional 
SOCK_STREAM communication to a TCP port and IP address that can be 
used for SDP communication.   

This section defines the SDP Port Mapper protocol, which enables the 
Connecting Peer, through a PM Client, to negotiate with an SDP Port 
Mapper Service to find the TCP port and IP address which the 
Connecting Peer should use to connect to the SDP mapping of the TCP 
application. 

Figure 16 depicts the relationships between the different entities 
involved in the SDP Port Mapper protocol, and the terminology used 
in this chapter to refer to those entities. The PMSP (PM Server) and 
the PM Client communicate using the Port Mapper protocol. The 
Accepting Peer and Connecting Peer use the results from the Port 
Mapper protocol to initiate LLP Connection Setup.  

 +-----------+ 
 |           |                                            +-----------+ 
 |   PMSP    |         Port Mapper Protocol               |           | 
 |(PM Server)|<------------------------------------------>| PM Client | 
 |           |                                            |           | 
 +-----------+                                            +-----------+ 
      ^                                                        ^ 
      |          Conventional                                  | 
      v          Address                                       v 
+------------+   +------------+         +------------+   +------------+ 
|            |-->|TCP Mapping |--- ? ---|TCP Mapping |<--|            |       
|  Accepting |   +------------+         +------------+   | Connecting | 
|   Peer     |                                           |   Peer     | 
|  (Service) |   SDP Address                             |            | 
|            |   +-------------+       +-------------+   |            |       
|            |-->|RDMA Mapping |-- ? --|RDMA Mapping |<--|            |       
+------------+   | using SDP   |       | using SDP   |   +------------+ 
                 +-------------+       +-------------+ 
    

   Figure 16 Port Mapper Protocol Entities 

Setting up an SDP Connection using the Port Mapper protocol is done 
in two stages. From the Client’s perspective, the first stage is 
performed by the PM Client to discover what address should be used 
for LLP Connection setup (either the SDP Address or the Conventional 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  32 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Address) to the service. Note that the mechanism for discovery of 
the original service’s address is outside the scope of this 
specification. The second stage occurs when the Connecting Peer 
attempts to connect to the service using the address negotiated in 
the first stage. Thus the Connecting Peer, as a result of the Port 
Mapper protocol, will attempt to setup an LLP Connection to the SDP 
Address, which will cause SDP Connection Setup to be initiated, or 
it will attempt to setup an LLP Connection to the Conventional 
Address, which will cause traditional streaming mode communication 
to be used. 

7.1 Definitions for Address Resolution 

Conventional Address - the original port and IP address, which the 
client attained by some means outside the scope of this paper.  
If the Port Mapper Service Provider denies access via SDP, then 
it is intended that the client fall back to the Conventional 
Address for connection. After connection setup to the 
Conventional Address, all communication is done in streaming 
mode (i.e. SDP is not used). 

Final SDP Address - a port and IP address, which was returned as a 
result of the Port Mapper protocol (in the PMAccept Message). 

PMSP - Port Mapper Service Provider. 

Port Mapper Service Provider (PMSP) - A service that returns the SDP 
listen port and IP address (i.e. SDP Address), if any, that the 
Connecting Peer may use to establish an SDP connection with the 
specified Accepting Peer.  

SDP Address - the port and IP address, which the client uses to 
create an LLP connection, initialize SDP, and then transfer ULP 
data using SDP. All communication after the initial SDP Hello 
Message is in iWARP mode. 

7.2 Port Mapper Service Requirements 

The following list of requirements drove the design of the SDP Port 
Mapper Protocol: 

Main Goals: 

1. When the SDP Port Mapper protocol has completed, the net result 
will be that both the Connecting Peer and the Accepting Peer 
will unambiguously have either an SDP over iWARP connection, or 
have a standard TCP connection. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  33 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

* All of the state at both ends of the connection is recovered 
after the protocol completes, regardless of the number of 
lost packets or timeouts. 

2. The Port Mapper must enable SDP to use the TCP port name space 
to establish an LLP connection between a Connecting Peer 
application instance and an Accepting Peer application instance. 

3. The Port Mapper protocol must enable interoperable 
implementations that support timeouts and retransmissions of 
Port Mapper Messages. 

Other goals of the protocol: 

1. Enable the Port Mapper Service Provider to provide load 
balancing and failover capabilities by manipulating the returned 
IP address and TCP port number. 

2. Enable the Port Mapper Service to direct the Connecting Peer to 
target the Accepting Peer’s advertised listen port or target a 
dynamically mapped SDP listen port for connection establishment. 

3. A Connecting Peer may transparently invoke the SDP Port Mapper 
without requiring application modification. 

4. Address denial of service issues that can occur because UDP is 
used to encapsulate the Port Mapper Protocol. 

5. Enable, but do not require, that the Port Mapper Service can, 
through some private mechanism, be able to verify that the 
service being negotiated is actually running on the target 
machine to be returned to the Port Mapper Client via the IP 
address. 

6. Enable the Port Mapper Service to allow the Connecting Peer to 
cache the returned TCP Port and IP address for a specific amount 
of time. This reduces the overhead associated with creating an 
SDP connection because the Port Mapper protocol does not have to 
be run before the SDP connection is setup. However, it only 
helps if the Connecting Peer is attempting to connect to a 
specific service at a specific IP address multiple times before 
the cached entry times out. 

7. The PM Server may be implemented using either a centralized 
(e.g., a central management agent acting on behalf of one or 
more Accepting Peers) or a distributed mechanism (e.g. point-to-
point Connecting Peer to Accepting Peer). 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  34 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

8. The PM Client may be implemented as an agent acting on behalf of 
the Connecting Peer or be implemented as part of the Connecting 
Peer. 

9. Provide support for either IPv4 (IETF RFC 791) or IPv6 (IETF RFC 
2460) based SDP services.  

10. Ensure that if a host crashes and comes back up, that all state 
is resynchronized. 

The protocol analysis in this specification assumes that the client 
TCP port namespace for a specific source IP address is unique within 
the host. If this is not true, additional analysis should be done to 
ensure relaxing this assumption maintains robust behavior. 

 

7.3 SDP Port Mapper Message Format 

The SDP Port Mapper uses a single message format for the four 
message types that are exchanged.  All Port Mapper messages MUST 
have the format defined in Figure 17 Port Mapper Message Format. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  35 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

      0                   1                   2                   3 
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |Ver|MT |  IPV  |  PmTime       |     Reserved                  | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |            ApPort             |            CpPort             | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                                                               | 
     +                        AssocHandle                            + 
     |                                                               | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                                                               | 
     +                                                               + 
     |                                                               | 
     +                           CpIPAddr                            + 
     |                                                               | 
     +                                                               + 
     |                                                               | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
     |                                                               | 
     +                                                               + 
     |                                                               | 
     +                           ApIPAddr                            + 
     |                                                               | 
     +                                                               + 
     |                                                               | 
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 

Figure 17 Port Mapper Message Format 

7.3.1.1 Version (Ver) - 2 Bits 

Version indicates the version of the SDP Port Mapper protocol. For 
this version of the specification, Ver MUST be set to zero. 

7.3.1.2 Message Type (MT) - 2 Bits 

Message Type indicates the Port Mapper message being exchanged.  A 
Port Mapper message MUST use one of the following values: 

* MT = 0x0 - Port Mapper Request Message (PMReq)  

* MT = 0x1 - Port Mapper Accept Message (PMAccept) 

* MT = 0x2 - Port Mapper Acknowledgement Message (PMAck) 

* MT = 0x3 - Port Mapper Deny Message (PMDeny) 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  36 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

7.3.1.3 IP Version (IPV) - 4 Bits 

IPV indicates the version of the IP address used by the Connecting 
Peer. Only 0x4 and 0x6 are valid values for IPV, as defined below. 
All other values are reserved. 

* IPV = 0x4 indicates an IPv4 address is used, and only the 
first 32-bits, in network byte order, of the CpIPAddr and 
the ApIPAddr fields are valid. The remaining 96 bits are 
transmitted as zeroes and are ignored on receipt.  

* IPV = 0x6 indicates an IPv6 address is used, i.e., all 128-
bits of the CpIPAddr and the ApIPAddr fields are valid. 

7.3.1.4 PmTime - 8 Bits 

PmTime indicates the total time since the receipt of the PMAccept 
Message that the PM Client may cache the response data. When the 
PmTime has elapsed, the PM Client MUST flush the response data. If 
the Connecting Peer requests an SDP Address from the PM Client after 
the PM Client’s cached response data has been flushed, the PM Client 
MUST issue a new PMReq Message. 

* PmTime = 0 indicates the Connecting Peer is only allowed to 
use the returned service port for a single connection 
operation and MUST NOT cache the PMAccept Message ApPort and 
ApIPAddr. The Accepting Peer implementation may bound the 
time it treats the mapping as valid; therefore, it is 
strongly recommended that the Connecting Peer initiate the 
LLP connection establishment subsequent to the receipt of 
the PMAccept and issuance of the PMAck Message. 

* PmTime = [1,127], (PmTime * 250) is the number of 
milliseconds that the Connecting Peer MAY cache the PMAccept 
Message ApPort. 

* PmTime = [128, 254], (PmTime * 1000) is the number of 
milliseconds that the Connecting Peer MAY cache the PMAccept 
Message ApPort. 

* PmTime = 255 indicates that the Connecting Peer MAY 
permanently cache the PMAccept Message ApPort. 

When determining PmTime, the PM Server and Accepting Peer should 
account for the expected total time to process the PMAccept, issue a 
PMAck, initiate LLP connection establishment, and transmit the LLP 
connection request. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  37 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

7.3.1.5 Reserved - 16 Bits 

Reserved field. Reserved MUST be transmitted as zero by the sender 
and MUST NOT be checked by the receiver. 

7.3.1.6 Accepting Peer Port (ApPort) - 16 Bits 

* For the PMReq Message, ApPort = requested server port 
number, i.e. the known listen port of the associated service 
to be mapped. 

* For the PMAccept Message, ApPort = mapped server port, i.e. 
the SDP listen port. 

* For the PMAck Message, ApPort = mapped server port, i.e. the 
SDP listen port. 

* For the PMDeny Message, ApPort is undefined, and MUST be 
transmitted as zeroes and ignored on receive. 

7.3.1.7 Connecting Peer Port (CpPort) - 16 Bits 

* For the PMReq Message, CpPort = local TCP port number for 
the Connecting Peer.  

* For the PMAccept Message, CpPort = the same value that was 
sent in the PMReq Message. 

* For the PMAck Message, CpPort = the same value that was sent 
in the PMAccept Message. 

* For the PMDeny Message, CpPort = the same value that was 
sent in the PMReq Message. 

7.3.1.8 Association Handle (AssocHandle) - 64 Bits 

The AssocHandle is an opaque identifier that MUST be set by the PM 
Client in PMReq Message.  The AssocHandle is reflected in the 
associated PMAccept Message, PMAck Message, and PMDeny Message.  The 
AssocHandle may be used to delineate multiple in-flight Port Mapper 
transactions from one another - a transaction is defined as the Port 
Mapper two-way or three-way message exchange. 

7.3.1.9 Connecting Peer IP Address (CpIPAddr) - 128 Bits 

In the PMReq Message this field contains the Connecting Peer’s IP 
address to be used for SDP session establishment. The CpIPAddr is 
reflected in the associated PMAccept Message, PMAck Message, and 
PMDeny Message. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  38 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Note that the CpIPAddr format is defined by the IP version. See 
section 7.3.1.3 for the format.    

7.3.1.10 Accepting Peer IP Address (ApIPAddr) - 128 Bits 

In the PMReq Message, this field contains the IP address of the 
Accepting Peer that will be used to establish a communication 
session with the Connecting Peer (e.g. the client is the Connecting 
Peer and the server is the Accepting Peer). The ApIPAddr may be 
changed by the PMSP in the corresponding PMAccept Message. The 
ApIPAddr value in the PMAck Message is the same as was specified in 
the corresponding PMAccept Message. The ApIPAddr value in the PMDeny 
Message is the same as was specified in the corresponding PMReq 
Message. 

The ApIPAddr format is defined by the IP version. See section 
7.3.1.3 for the format. 

7.4 Operational Overview 

The Port Mapper protocol uses either a two-way or a three-way UDP/IP 
(datagram) [UDP] message exchange between the PM Client and the Port 
Mapper service provider (PMSP) acting on behalf of the Accepting 
Peer or the Accepting Peer itself.  The PMReq Message's destination 
UDP port number MUST by default be as defined in Section 16 IANA 
Considerations on page 100. 

The first message exchanged in either case is a PMReq Message, which 
MUST be issued by the PM Client and MUST be encapsulated within UDP.  
The PMReq Message fields MUST be set by the PM Client as follows: 

* Ver - MUST be set to 0x0 for this version of the 
specification. 

* IPV - MUST be set to either 0x4 if the CpIPAddr and ApIPAddr 
are an IPv4 address or 0x6 if the CpIPAddr and ApIPAddr are 
IPv6 addresses. 

* MT - MUST be set to 0x0. 

* PmTime - MUST be set to zero and ignored on receive. 

* ApPort - MUST be set to the listen port for the associated 
service. 

* CpPort - MUST be set to the local TCP Port number that the 
Connecting Peer will use when connecting to the service. 

* AssocHandle - MUST be set by the Connecting Peer to a unique 
value to differentiate in-flight transactions. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  39 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

* CpIPAddr - MUST be set to the Connecting Peer’s IP address 
that will initiate LLP connection establishment. 

* ApIPAddr - MUST be set to the target Accepting Peer’s IP 
address to be used in connection establishment. 

* A PMReq Message MUST be transmitted by the PM Client using 
UDP/IP to target the IANA Port Mapper service provider port 
as defined in Section 16 IANA Considerations on page 100. 

If the port mapping operation is successful, the PM Server MUST 
return a PMAccept Message.  

The PMAccept Message MUST be encapsulated within UDP using the UDP 
Ports and IP Address information contained within the corresponding 
PMRequest Message. The PMAccept fields MUST be set by the PM Server 
and  as follows: 

* Ver - MUST be set to 0x0 for this version of the 
specification. 

* IPV - MUST be set to the same value as the IPV field in the 
PMReq Message. 

* MT - MUST be set to 0x1. 

* PmTime - MUST be set to a value within the defined range. 
See section 7.3.1.4. 

* ApPort - MUST be set to the SDP listen port. 

* CpPort - MUST be set to the same value as the CpPort field 
in the corresponding PMReq Message. 

* AssocHandle - MUST be set to the same value as the 
AssocHandle field in the corresponding PMReq Message. 

* CpIPAddr - MUST set to the same value as the CpIPAddr field 
in the corresponding PMReq Message. 

* ApIPAddr - MUST be set to the Accepting Peer's IP address to 
be used in connection establishment.  The Accepting Peer MAY 
return a different ApIPAddr than requested in the 
corresponding PMReq Message.   

* A PMAccept Message MUST be transmitted using the address 
information contained in the UDP/IP headers used to deliver 
the corresponding PMReq Message. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  40 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Upon receipt of a PMAccept Message, the PM Client MUST return a 
PMAck Message.  

The PMAck Message MUST be encapsulated within UDP using the UDP 
Ports and IP Address information contained within the corresponding 
PMAccept or PMDeny Message. The PMAck Message fields MUST be set by 
the PM Client as follows: 

* Ver - MUST be set to 0x0 for this version of the 
specification. 

* IPV - MUST be set to the same value as the IPV field in the 
corresponding PMAccept Message. 

* MT - MUST be set to 0x2. 

* PmTime - MUST be set to zero and ignored on receive. 

* ApPort - MUST be set to the same value as the ApPort field 
in the corresponding PMAccept Message. 

* CpPort - MUST be set to the same value as the CpPort field 
in the corresponding PMAccept Message. 

* AssocHandle - MUST be set to the same value as the 
AssocHandle field in the corresponding PMAccept Message. 

* CpIPAddr - MUST be set to the same value as the CpIPAddr 
field in the corresponding PMAccept Message. An Accepting 
Peer implementation may use the CpIPAddr to validate the 
subsequent LLP connection request through association of the 
CpIPAddr with the ApPort returned in the corresponding 
PMAccept Message.   

* ApIPAddr - MUST be set to the same value as the ApIPAddr 
field in the corresponding PMAccept Message. 

* A PMAck Message MUST be transmitted using the address 
information contained in the UDP/IP headers used to deliver 
the PMAccept Message. 

A PMAck Message MUST be transmitted by the PM Client using the 
address information contained in the UDP/IP headers used to deliver 
the PMAccept Message.  The three-way message exchange is illustrated 
in Figure 18 Three-way Port Mapper Message Exchange: 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  41 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

          PM Server                          PM Client 
              |            PMReq Message          | 
              |---------------------------------->| 
              |                                   | 
              |            PMAccept Message       | 
              |<----------------------------------| 
              |                                   | 
              |            PMAck Message          | 
              |---------------------------------->| 
              |                                   | 
 

Figure 18 Three-way Port Mapper Message Exchange 

A three-way message exchange is used for the following reasons: 

1. It supports either centralized or distributed (peer-to-peer) 
Port Mapper implementations while minimizing the number of 
packets exchanged between the Connecting Peer and the Accepting 
Peer. 

The flexibility afforded by the Port Mapper messages enables a 
wide variety of interoperable implementation options.  For 
example: 

* The PM Client may be implemented as an agent acting on 
behalf of the Connecting Peer or be implemented as part of 
the Connecting Peer. 

* The PM Server may be implemented as an agent acting on 
behalf of the Accepting Peer or be implemented as part of 
the Accepting Peer. 

* The ApIPAddr field within the PMAccept Message may be 
different than the requested IP Address (i.e. the ApIPAddr 
field in the PMRequest) due to local policy decisions. For 
example, if the Accepting Peer contains multiple network 
interfaces, and its local policy supports network interface 
load balancing, then the Accepting Peer may return a 
different ApIPAddr for the selected target interface than 
was requested in the PMReq Message. 

2. It allows an Accepting Peer to dynamically create the SDP listen 
port and know that the Connecting Peer will utilize this port 
only within the specified time period. The Accepting Peer MAY 
release the associated resources upon the time period expiring, 
if a PMAck Message is not received.  The ability to release 
resources minimizes the impact of a denial of service attack via 
consumption of a SDP listen port. For additional information see 
Section 15.2.1 Port Flooding on page 98. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  42 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

If the port mapping operation is not successful, the Accepting Peer 
MUST return a PMDeny Message. The PMDeny Message MUST be 
encapsulated within UDP using the UDP Ports and IP Address 
information contained within the corresponding PMRequest Message. 
The PMDeny Message fields MUST be set by the Accepting Peer as 
follows: 

* Ver - MUST be set to 0x0 for this version of the 
specification. 

* IPV - MUST be set to the same value as the IPV field in the 
PMReq Message. 

* MT - MUST be set to 0x3. 

* PmTime - MUST be set to zero and ignored on receive. 

* ApPort - MUST be set to the same value as the ApPort field 
in the corresponding PMReq Message. 

* CpPort -MUST be set to the same value as the CpPort field in 
the corresponding PMReq Message. 

* AssocHandle - MUST be set to the same value as the 
AssocHandle field in the corresponding PMReq Message. 

* CpIPAddr - MUST be set to the same value as the CpIPAddr 
field in the corresponding PMReq Message. 

* ApIPAddr - MUST be set to the same value as the ApIPAddr 
field in the corresponding PMReq Message. 

* A PMDeny Message MUST be transmitted using the address 
information contained in the UDP/IP headers used to deliver 
the PMReq Message. 

Upon receipt of a PMDeny Message, the PM Client MUST treat the 
associated Port Mapper transaction as complete and MUST not issue a 
PMAck Message. A Port Mapper operation may fail for a variety of 
reasons, e.g., there is no such service mapping, resource 
exhaustion, etc.   

The two-way message exchange is illustrated in Figure 19: 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  43 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

             PM Client                             PM Server 
                  |                                     | 
                  |             PMReq Message           | 
                  |------------------------------------>| 
                  |                                     | 
                  |             PMDeny Message          | 
                  |<------------------------------------| 
                  |                                     | 
 

Figure 19 Two-way Port Mapper Message Exchange  

7.5 Lost Messages, Timeouts, and Other Error Cases 

The Port Mapper Protocol requires the PM Client to implement 
timeouts on transactions, and it is RECOMMENDED the PM Server 
implement timeouts to recover state because the Port Mapper protocol 
is encapsulated on top of UDP - an unreliable protocol. The behavior 
requirements in this section ensure that regardless of whether the 
PM Server implements timeouts, both Peers will interoperate. Because 
timeouts can occur, retransmissions of Port Mapper Messages are 
possible. 

The PM Server detects duplicate PMReq Message by comparing the 5-
tuple (AssocHandle, ApPort, CpPort, ApIPAddr, CpIPAddr) of the 
message with the five-tuples within its internal PM transaction 
state. If the five values match the internal state, then the PM 
Server MUST treat the incoming PMReq Message as a duplicate message.  

The PM Client detects duplicate PMAccept or PMDeny messages by 
comparing the 3-tuple (AssocHandle, CpPort, CpIPAddr) of the message 
with the 3-tuples within its internal PM transaction state. If the 
three values match the internal state, then the PM Client MUST treat 
the incoming PMAccept or PMDeny Message as a duplicate message.  

7.5.1 PM Client Behavior 

The combination of the PM Client and the Connecting Peer MUST select 
the combination of the AssocHandle, CpIPAddr, and CpPort to ensure 
that it is unique within the maximum lifetime of a packet on the 
network. This ensures that the PMSP will not see delayed duplicate 
messages. 

The PM Client MUST arm a timeout when transmitting a PMReq Message. 
If a timeout occurs for the reply to the PMReq message (i.e. neither 
a corresponding PMAccept nor a PMDeny Message was received before 
the timeout occurred), the PM Client MUST retransmit the PMReq 
Message and re-arm the timeout, up to a maximum number of 
retransmissions (timeouts). 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  44 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

The PM Client MUST use the same AssocHandle, ApPort, ApIPAddr, 
CpPort, and CpIPAddr on any retransmissions of PMReq.  The initial 
AssocHandle chosen by a host SHOULD be chosen at random to make it 
harder for a third party to interfere with the protocol. The 
combination of the AssocHandle, ApPort, CpPort, ApIPAddr, and 
CpIPAddr MUST be unique within the host associated with the 
Connecting Peer. This enables the PMSP to differentiate between 
client requests.   

If the PM Client does not get an answer from the PMSP after the 
maximum number of timeouts, the PM Client SHOULD stop attempting to 
connect to an SDP Address and instead use the Conventional Address 
for LLP connection setup. Conventional LLP connection setup will 
cause streaming mode data transfer to be initiated. The specifics of 
how the fall back to the Conventional Address is done are outside 
the scope of this specification. 

If the PM Client receives a LLP Connection Reset (e.g. TCP RST 
segment) when attempting to connect to the SDP Address, it SHOULD 
view this as equivalent to receiving a PMDeny Message, and thus 
attempt to connect to the service using the Conventional Address. 

If the PM Client receives a reply to a PMReq Message, and later 
receives another reply for the same request, the PM Client MUST 
discard any additional replies (PMAccept or PMDeny) to the request.  

If the PM Client receives a PMAccept or PMDeny and has no associated 
state for the Message, the Message MUST be discarded. 

7.5.2 PM Server Behavior 

The PMSP SHOULD arm a timer when it sends a PMAccept Message, to be 
disabled when either a PMAck or LLP connection setup request (e.g. 
TCP SYN) to the SDP Address has occurred. If a PMAck Message or LLP 
Connection setup request is not received before the end of the 
timeout interval, all resources associated with the PMReq MUST be 
deleted. This protects against certain denial-of-service attacks. 
Note that if the PM Server was implemented on a different host than 
the Accepting Peer and the PMAck was lost, the PM Server would not 
be able to observe the LLP Connection setup request - thus the timer 
could expire after an SDP connection has been setup to the SDP 
Address. Therefore if the timer expires the only state that should 
be cleaned up is state associated with the connection setup request 
- and an existing, established LLP connection to the SDP Address 
should be unaffected.    

If the PMSP detects a duplicate PMReq Message, it MUST reply with 
either a PMAccept or a PMDeny Message. In addition, if the PMSP 
armed a timer when it sent the previous PMAccept Message for the 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  45 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

duplicated PMReq Message, it should reset the timer when resending 
the PMAccept Message. 

Because the PM Client can retransmit PMReq Messages, and the PMSP 
will send a reply for each request, it is possible to get duplicate 
PMAccept or PMDeny Messages. Because the PM Client will discard 
additional replies from the PMSP for a specific transaction, 
presumably there will not be duplicate PMAck Messages. However, to 
cover the condition where there is a race in the client that could 
cause multiple PMAck Messages to be sent for a specific transaction 
(or an early timeout by the PMSP), if a PMSP receives a PMAck 
Message which does not relate to any known state, it MUST discard 
the PMAck message. Note that per TCP semantics, if a TCP SYN segment 
is received at the SDP Port Address which that does not relate to 
any known state, TCP will send back to the Connecting Peer a TCP 
Reset segment. Thus the Connecting Peer is able to recover its state 
and tear down the connection request. 

When the PMSP is attempting to attach the Connecting Peer to a 
service, the service can have one of two states - available or 
unavailable. If a PMSP receives a duplicate PMReq Message, the PMSP 
SHOULD use the most recent state of the requested service to reply 
to the PMReq (either with a PMAccept or a PMDeny).     

The above rules mean that the PMSP will always attempt to 
communicate the most current state information about the requested 
service. However, because the Port Mapper protocol is mapped onto 
UDP/IP, it is possible that messages can be re-ordered upon 
reception. Thus when the PMSP receives a duplicate PMReq Message, 
and the PMSP changes its reply from a PMAccept to a PMDeny or a 
PMDeny to a PMAccept, the reply can be received out-of-order. To 
keep the Port Mapper protocol simple, rather than add a sequence 
number to detect this sequence of events, the approach is to keep 
the protocol response deterministic and require the PM Client to use 
the first reply it gets from the PMSP (see section 7.5.1 PM Client 
Behavior on page 43). 

If the PMSP receives a PMReq for a transaction that it has already 
sent back a PMAccept, but the AssocHandle does not match the prior 
request, the PMSP MUST discard and cleanup the state associated with 
the prior request and process the new PMReq normally. 

Note that if a duplicate message arrives after the PMSP state for 
the request has been deleted, the PMSP will view it as a new 
request, and generate a reply. If the prior reply was acted upon by 
the Connecting Peer, then the latest reply would presumably have no 
matching context and be discarded by the PM Client. The PMSP state 
will be recovered in one of the following ways: 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  46 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

* after the timeout interval (waiting for PMAck or TCP SYNLLP 
connection setup request to the SDP Address), or  

* if the client issues a new request, with a new AssocHandle, 
but for the same four-tuple (ApPort, CpPort, ApIPAddr, 
CpIPAddr) the PMSP will discard the prior state and answer 
the current request. 

The Hello and HelloAck Messages defined in sections 6.2.1 Hello 
Message (HH) on page 17 and 6.2.2 HelloAck Message (HAH)on page 19 
are used to establish the SDP connection. 

SDP connection teardown uses the LLP connection teardown mechanisms, 
plus two additional SDP Messages types to emulate TCP connection 
semantics for abortive and graceful connection teardown. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  47 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

8 Connection Setup 

8.1.1 iWARP Connection Setup 

SDP communications MUST use the iWARP protocol suite for all SDP and 
RDMA Messages, except for the Hello Message, which MUST be sent in 
Streaming Mode. 

Each socket corresponds to a single iWARP Connection Context.  

SDP connection setup MUST include the following numbered steps in 
order, after the LLP connection is setup: 

1. The Connecting Peer prepares to send a Hello Message. 

a. The Connecting Peer MUST configure the number of local 
receive Private Buffers that will be posted and the size of 
those receive Private Buffers. See section 10 Private Buffer 
Management on page 73 for constraints on Private Buffers. 

b. The Connecting Peer MUST create a Connection Context, 
initialize any required attributes and associate that 
Connection Context to the LLP Stream if it has not done so 
already. 

c. The Connecting Peer MUST post the number of receive Private 
Buffers that it advertises in the BSDH Bufs field at this 
time or before sending the Hello Message. See section 10 
Private Buffer Management on page 73. 

d. The Connecting Peer MUST set the values of the LocIRD and 
LocORD fields in the Hello Message to greater than or equal 
to one and less than or equal to the local IRD and local ORD 
values, respectively, that the connection is able to 
support. 

e. The Connecting Peer MUST be able to receive an incoming 
iWARP Message immediately after sending the Hello Message. 
Note that the transition to iWARP mode and sending the Hello 
Message must appear to be performed atomically. Failure to 
do so may result in race conditions. 

2. The Connecting Peer MUST send a Hello Message to the Accepting 
Peer in Streaming Mode. The Connecting Peer MUST NOT send any 
iWARP Messages until a HelloAck Message is received from the 
Accepting Peer. See section 6.2.1 Hello Message (HH) on page 17 
and section 10.3 Initialization of Send Credit on page 74 for 
additional information on filling in the SDP parameters. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  48 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

3. The Accepting Peer, upon receipt of the Hello Message, 
determines whether to accept or terminate the connection attempt 
as follows: 

a. The Accepting Peer MUST terminate the connection attempt 
when any of the following conditions occur: 

* The Accepting Peer does not support the Major Protocol 
Version Number contained in the Hello Message. 

* The MaxAdverts field in the Hello Message is equal to 
zero. 

* The LocIRD or LocORD field in the Hello Message is equal 
to zero. 

b. If none of the above conditions occur, the Accepting Peer 
may accept the connection. 

* The Accepting Peer SHOULD NOT reject the connection 
request based solely on a mismatch of the Minor Protocol 
Version Number. 

* The Accepting Peer MUST use the protocol specified by 
the minimum of the locally supported Minor Protocol 
Version Number and the value of the MinV field  received 
in the Hello Message. 

4. If the connection is accepted, the Accepting Peer MUST send a 
HelloAck Message back to the Connecting Peer. See section 6.2.2 
HelloAck Message (HAH) on page 19 for additional information. 
The steps prior to sending a HelloAck Message are as follows: 

a. The Accepting Peer MUST create a Connection Context, 
initialize required attributes and associate that Connection 
Context with the LLP connection if it has not done so 
already. 

b. The Accepting Peer MUST post the number of its receive 
Private Buffers that it advertises in the BSDH Bufs field 
before sending the HelloAck Message. See section 10 Private 
Buffer Management on page 73. 

c. The Accepting Peer MUST set the values of LocIRD and LocORD 
fields in the HelloAck Message to greater than or equal to 
one and less than or equal to the local IRD and local ORD 
values, respectively, that the connection is able to 
support.  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  49 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

d. If the LocORD in the incoming Hello Message is less than the 
Accepting Peer’s local LocIRD in the associated Connection 
Context, the Accepting Peer MAY reduce its local IRD to a 
value that is greater than or equal to the LocORD contained 
in the Hello Message.  

e. If the LocIRD in the incoming Hello Message is less than the 
Accepting Peer’s local ORD in the associated Connection 
Context, the Accepting Peer MUST modify that local ORD to a 
value less than or equal to the LocIRD contained in the 
Hello Message. 

5. Send the HelloAck Message using the iWARP Send with SE Message. 

6. The Accepting Peer MUST set the Flow Control Mode to Combined 
Mode and MAY immediately commence data transfer. 

7. The Connecting Peer receives the HelloAck Message. 

a. The Connecting Peer MUST terminate the connection attempt 
when any of the following conditions occur: 

* The Major Protocol Version Number sent in the Hello 
Message does not match the Major Protocol Version Number 
in the HelloAck Message. Note that this should not 
happen because the Accepting Peer should have terminated 
the SDP connection due to a MajV mismatch. 

* The MaxAdverts field in the HelloAck Message is equal to 
zero. 

* The LocORD or LocIRD field in the HelloAck Message is 
equal to zero. 

b. If the above conditions do not cause a connection 
termination:  

* The Connecting Peer SHOULD NOT terminate the connection 
request based solely on a mismatch of the Minor Protocol 
Version Number sent in the Hello Message and the MinV 
value received in the HelloAck Message. 

* The Connecting Peer MUST use the protocol specified by 
the minimum of the Minor Protocol Version Number sent in 
the Hello Message and the value received in the HelloAck 
Message. 

c. If the LocORD in the incoming HelloAck Message is less than 
the Connecting Peer’s local IRD in the associated Connection 
Context, the Connecting Peer MAY reduce its local IRD to a 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  50 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

value that is greater than or equal to the LocORD contained 
in the HelloAck Message.  

d. If the LocIRD in the incoming HelloAck Message is less than 
the Connecting Peer’s local ORD in the associated Connection 
Context, the Connecting Peer MUST modify its local ORD to a 
value less than or equal to the LocIRD contained in the 
HelloAck Message.  

e. The Connecting Peer MUST set the Flow Control Mode to 
Combined Mode and MAY immediately commence data transfer. 
All SDP Messages from this point on are sent using iWARP. 

8.1.2 Aborting Connection Setup 

If the LLP connection is torn down during connection setup, the 
implementation MUST abort the SDP connection setup.  

An SDP implementation should clean up any resources associated with 
an aborted connection. 

8.2 Connection Teardown 

SDP emulates TCP connection teardown functionality. TCP provides two 
ways to close a connection - a graceful close, where any data that 
has been posted by the ULP to the transport is transferred before 
the connection is torn down, and abortive close, where the 
connection is immediately torn down. 

8.2.1 Graceful Close 

TCP’s graceful close (also known as graceful disconnect or half-
closed connections) is an agreement between the transport and ULP 
that: 

* Before the connection is terminated, all data accepted for 
transmission by the transport before the close occurred is 
guaranteed to be sent out (under reasonable limitations) and 
reliably acknowledged.  

* Data reception can continue normally until the Remote Peer 
performs a close. 

Sockets Direct Protocol provides the same behavior over iWARP. 

The Local Peer SHOULD NOT close the LLP connection at the time of 
the ULP’s call to gracefully close the half-connection. The Local 
Peer MUST reject any send data posted by the ULP after the ULP close 
call occurred. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  51 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

The Local Peer SHOULD continue to receive ULP data through any of 
the SDP Data Transfer Mechanisms until the Remote Peer gracefully 
closes the connection, or the connection is abortively closed (see 
section 8.2.2 Abortive Close on page 52 for the abortive close 
protocol).  

The Local Peer MUST also perform the following operations in the 
order specified: 

1. The Local Peer MUST complete the transmission of all outbound 
data posted by the ULP before the ULP requested the graceful 
close. This means that all Bcopy transfers, Write Zcopy 
transfers, Read Zcopy transfers, and Transaction transfers from 
this Data Source have been completed (see section 9 Data 
Transfer Mechanisms on page 54). Completions may be successful 
or unsuccessful (e.g., the LLP connection was torn down). 
Unsuccessful completions MUST cause the Local Peer to perform an 
abortive close (see section 8.2.2 Abortive Close on page 52).  

2. The Local Peer MUST send a DisConn Message to the Remote Peer. 
This informs the Remote Peer that the connection is being 
terminated gracefully, allowing the Remote Peer to inform the 
ULP of this fact, as appropriate. If the transmission of the 
DisConn Message completed with an error, the connection tear 
down was abortive. The DisConn Message provides similar 
semantics to a TCP segment with the FIN bit set. Because the LLP 
is required to provide reliable in-order delivery, no ULP data 
will be received by the Remote Peer after the Remote Peer 
receives the DisConn Message. The Local Peer MUST continue to 
receive SDP Messages to enable ULP data transfer on the opposite 
half-connection.  

3. The Local Peer MUST wait for one of the following events: 

* The Local Peer receives a DisConn Message. The Remote Peer 
gracefully closed the opposite half-connection, unless an 
AbortConn Message is received before the connection is 
terminated. 

* The LLP connection is torn down (this is due to an abortive 
close). 

* The local ULP abortively closes the connection (see section 
8.2.2 Abortive Close on page 52).  

* When no forward progress is being made, the connection MAY 
be abortively closed (see section 8.2.2 Abortive Close on 
page 52).  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  52 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

4. When the SDP implementation is informed that the LLP connection 
was torn down, the Local Peer MUST determine whether a DisConn 
Message, or a DisConn Message followed by an AbortConn Message, 
was received. If a DisConn Message was received without an 
AbortConn, the graceful close was successfully completed. If a 
DisConn Message was not received, or a DisConn Message and an 
AbortConn Message were received, then the close was abortive 
(see section 8.2.2 Abortive Close on page 52). In either case, 
the Local Peer MUST complete all ULP receive buffers with 
information about how much of the buffer was filled. 

5. The Local Peer MUST also clean up all iWARP resources associated 
with the connection (Connection Context, buffers, etc.).  

The Remote Peer MUST perform the following operations for a graceful 
close: 

1. Upon receipt of a DisConn Message, the Remote Peer MUST consider 
all its outstanding SinkAvail advertisements as canceled, 
complete all ULP receive buffers, and wait for the ULP to close 
the connection. The Remote Peer MUST continue to allow normal 
ULP send data transfer, but MUST complete any new ULP receive 
buffers and inform the ULP (as appropriate) that the receive 
half-connection has been gracefully closed. 

2. If the ULP issues an abortive close, the Remote Peer MUST use 
the abortive close protocol (see section 8.2.2 Abortive Close on 
page 52). If the ULP issues a graceful close, the Remote Peer 
MUST complete the transmission of all send ULP data that was 
posted before the ULP posted the graceful close. Completions may 
be successful or unsuccessful (e.g., the LLP connection was torn 
down). The Remote Peer MUST reject any send data posted by the 
ULP after the ULP close call occurred. 

3. The Remote Peer MUST send a DisConn Message to the Local Peer. 
If the DisConn Message completed without error and no AbortConn 
Message was received, then the graceful teardown was successful. 
If the DisConn Message completed with an error, or an AbortConn 
was received, the connection teardown was abortive.  

4. The Remote Peer MUST use the LLP connection teardown protocol to 
complete the teardown. The Remote Peer MUST also close and clean 
up all iWARP resources associated with the connection 
(Connection Context, buffers, etc.). 

8.2.2 Abortive Close 

If the ULP specifies an abortive disconnect or an abortive 
disconnect is required for some other reason, an SDP implementation 
MUST comply with the following rules: 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  53 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

* If the LLP connection is still valid and a DisConn Message 
was previously sent, then an implementation MUST send an 
AbortConn Message and process its completion before 
terminating the LLP connection. 

* If the LLP connection is not valid, or if the LLP connection 
is valid and no DisConn Message was previously sent, an 
implementation MUST NOT attempt to send additional SDP 
Messages and MUST immediately terminate the LLP connection.  

An SDP implementation MUST consider the connection abortively torn 
down if the LLP connection is torn down without receiving a DisConn 
Message, or if both an AbortConn and a DisConn Message were 
received. An implementation MUST discard any unsent ULP data.  

If an SDP protocol violation occurs, an implementation SHOULD 
abortively close the connection. A protocol violation includes but 
is not limited to LLP errors, invalid SDP Messages, or incorrectly 
formatted SDP Messages. 

Certain ULP behaviors can lead to a situation under which the ULP 
initiates graceful teardown in the send direction (causing the 
DisConn Message to be sent), and then some error occurs that 
requires the connection to be abortively closed. The AbortConn 
Message is used for this purpose. The AbortConn Message is sent if 
the DisConn Message has already been sent, but the LLP connection 
has not been terminated yet, and some error condition arises that 
calls for abortive teardown of the socket under TCP semantics. 
Sending out the AbortConn Message informs the Remote Peer to ignore 
the earlier DisConn Message and inform the ULP (as appropriate) that 
the connection was closed abortively. In this case, the AbortConn 
Message provides similar semantics to TCP sending a segment with the 
RST bit set after it has already sent a segment with the FIN bit 
set. 

Once the AbortConn Message completion event occurs, an SDP 
implementation MUST use the normal LLP connection teardown protocol 
to complete the teardown.  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  54 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

9 Data Transfer Mechanisms 

SDP employs four Data Transfer Mechanisms: 

* Bcopy - transfer of ULP data from send buffers into receive 
Private Buffers. 

* Read Zcopy - transfer of ULP data through RDMA Reads, 
preferably directly from ULP Buffers into ULP Buffers. 

* Write Zcopy - transfer of ULP data through RDMA Writes, 
preferably directly from ULP Buffers into ULP Buffers. 

* Transaction - an optimized ULP data transfer model for 
transactions. It piggy-backs ULP data transfer using Private 
Buffers on top of the Write Zcopy mechanism used to transfer 
ULP data on the opposite half-connection. 

The policy that controls when to use the Bcopy Data Transfer 
Mechanisms versus a Zcopy Data Transfer Mechanism is outside the 
scope of this specification. An implementation dependent parameter 
defined as the Bcopy Threshold is used to abstractly define the 
results of the policy decision. No constraints are placed on the 
Data Source Bcopy Threshold values, and the value of the Data Source 
Bcopy Threshold may be static or dynamic. The Data Sink Bcopy 
Threshold has a single constraint: it MUST be greater than or equal 
to the size of the receive Private Buffers. Its value MAY also be 
static or dynamic. 

Note that some socket implementations do not provide deterministic 
results if overlapping receive buffers are posted. 

An SDP implementation MUST support the Bcopy Data Transfer 
Mechanism, both as a Data Source and as a Data Sink. 

It is strongly RECOMMENDED that an SDP implementation support the 
ability to initiate all of the Data Transfer Mechanisms. 

It is strongly RECOMMENDED that an SDP implementation support the 
ability to carry out all of the Data Transfer Mechanism requests. 

If an SDP implementation does not support carrying out a received 
request for a given optional Data Transfer Mechanism, the 
implementation MUST still be able to parse the received request, and 
to force the use of the Bcopy Data Transfer Mechanism by sending a 
SendSm Message. 

For example, if an SDP implementation does not support carrying out 
the Read Zcopy Data Transfer Mechanism request, when a SrcAvail 
Message is received, the implementation must be able to respond with 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  55 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

a SendSm Message to force the Data Source to use the Bcopy Data 
Transfer Mechanism. 

9.1 Bcopy 

SDP maintains a small set of receive Private Buffers for receiving 
data that the Data Source transfers using iWARP Sends. Each 
connection has a separate pool of receive Private Buffers. 

                         Data Source                    Data Sink 

                                   |                              | 
                                   |       Data Message           | 
  This is a ladder diagram         |       with payload #1        | 
  showing the Data Source          |----------------------------->| 
  sending multiple Data Messages   |                              | 
  to send ULP data. Note that      |       Data Message           | 
  Data Messages are sent to the    |       with payload #2        | 
  receive Private Buffer pool,     |----------------------------->| 
  and thus require a flow-control  |                              | 
  update periodically. This        |       Data Message           | 
  update can be piggybacked on a   |       with payload #3        | 
  SDP Message sent as part of      |----------------------------->| 
  normal data flow or it can be    |                              | 
  sent in a Data Message with      |                              | 
  no payload.                      |       Data Message with      | 
                                   |       no payload, used       | 
                                   |       for flow control       | 
                                   |<-----------------------------| 
                                   |                              | 

 

Figure 20 Ladder Diagram for Bcopy Mechanism 

Each peer chooses its own sizes of send and receive Private Buffers 
and informs the other peer of the size of the receive Private Buffer 
during connection setup. 

The Data Source MUST limit the amount of ULP data sent in an SDP 
Message (specifically a Data, SinkAvail, or SrcAvail Message) to 
ensure the ULP data plus SDP header(s) fits within the receive 
Private Buffer size advertised by the Data Sink. 

SDP Message transfer is flow controlled as described in section 10 
Private Buffer Management on page 73. 

For the Data Source, data may be copied from the ULP’s buffer to the 
payload sections of one or more of the send buffers, or the ULP 
Buffer may be referenced directly by the send work request. In the 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  56 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

header, the MID is set to type Data Message and the SDP Message size 
is set to the ULP payload size plus the size of the header. 

The Data Sink receives the SDP Message in its posted receive Private 
Buffers. When a ULP receive buffer is completed is outside the scope 
of this specification. 

9.2 Read Zcopy 

This mechanism MUST transfer data through the following sequence of 
operations: 

1. The Data Source sends a SrcAvail Message when a send ULP Buffer 
that the Source deems suitable has been posted (there are no 
protocol restrictions on the Data Source use of the Bcopy 
mechanism versus Read Zcopy mechanism for transfer of a specific 
ULP Buffer). For example, a SrcAvail Message may be sent if the 
ULP Buffer is larger than the Bcopy Threshold. If the Source 
chooses to advertise a ULP Buffer in a SrcAvail Message, the ULP 
Buffer is referred to as an RDMA Buffer (the RDMA Buffer may be 
a copy of the ULP Buffer).  

In Combined Mode the SrcAvail Message payload MUST contain at 
least one byte of ULP payload. However, in Pipelined Mode the 
SrcAvail Message MUST NOT contain ULP payload (see sections 11.2 
Combined Mode on page 80 and 11.3 Pipelined Mode on page 81).  

The SrcAH Len, VA, and STag fields MUST describe the entire Data 
Source RDMA Buffer and MUST reference the same Data Source RDMA 
Buffer, regardless of whether a copy of the initial portion of 
the RDMA Buffer is included in the SrcAvail Message payload. 

After receiving a SrcAvail Message, the Data Sink MAY send a 
SendSm Message when ULP receive buffer(s) are not suitable for 
Read Zcopy. 

2. The Data Sink receives the SrcAvail Message and waits for the 
ULP to post a receive buffer to SDP. If the Data Sink chooses to 
complete the data transfer: 

a. If the receive ULP Buffer is viewed as unsuitable for Read 
Zcopy, the Data Sink MUST send a SendSm Message (see section 
9.5.2 Mechanisms for Forcing Bcopy on page 66).  

b. If the receive ULP Buffer is viewed as suitable for Read 
Zcopy, the Data Sink MUST use the Read Zcopy Data Transfer 
Mechanism. An implementation should use the ULP Buffer as 
the RDMA Buffer. An implementation may choose to create an 
intermediate buffer as the RDMA Buffer, and then copy the 
data into the ULP Buffer. If the initial portion of the send 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  57 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

RDMA Buffer is present in the SrcAvail advertisement, the 
Data Sink moves the data into the RDMA Buffer through one of 
the following mechanisms: 

* Copy some or all of the ULP payload of the SrcAvail 
Message to the receive RDMA Buffer, and then perform one 
or more RDMA Read(s) to retrieve the rest of the data, 
offsetting the initial RDMA Read transfer by the number 
of bytes that were copied out of the SrcAvail Message 
ULP payload. 

* Avoid the ULP payload copy and start the initial RDMA 
Read at the start of the send RDMA Buffer. Additional 
RDMA Reads may be used to transfer the rest of the 
buffer. 

After the RDMA Read(s) complete(s), the Data Sink MUST send an 
RdmaRdCompl Message to the Data Source, unless the operation was 
canceled (see section 9.5.4 SrcAvail Revocation on page 69). The 
Data Sink MUST wait for completion of the RDMA Read before 
sending the RdmaRdCompl. 

The RdmaRdCompl header MUST contain the size (in bytes) of ULP 
data transferred through the RDMA Read(s), excluding any portion 
of the ULP data that was originally transferred through the 
SrcAvail Message. The RdmaRdCompl Message MUST refer to data 
made available through a single SrcAvail advertisement. 

A Data Sink MUST only send an RdmaRdCompl Message associated 
with the oldest incomplete SrcAvail Message. 

The RdmaRdCompl Len does not include the portion of the data, if 
any, transferred within the SrcAvail Message as ULP payload. The 
size MAY be less than the size of the Data Source RDMA Buffer 
advertised in the SrcAvail Message minus the size of ULP data 
payload included in the SrcAvail Message. An implementation MAY 
loop performing a series of RDMA Read operations followed by 
RdmaRdCompl Messages to transfer the send RDMA Buffer contents. 

It is expected (but not required) that protocol implementations 
would typically RDMA Read all the ULP data and then send a 
single RdmaRdCompl Message to inform the Data Source that the 
SrcAvail Message has been Processed. The facility to specify 
data transfer size less than the RDMA Buffer size advertised in 
the SrcAvail Message enables various transfer scenarios. For 
example, a protocol implementation could RDMA Read part of the 
data and then send a RdmaRdCompl Message followed by a SendSm 
Message to retrieve the rest of the data using the Bcopy 
mechanism. Only one SendSm Message can be used to complete data 
transfer for a given SrcAvail advertisement. See 3) below. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  58 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Note that if the Flow Control Mode from the Data Source to the 
Data Sink is Combined Mode, the Data Sink can set the REQ_PIPE 
bit in the BSDH Flags field of the RdmaRdCompl Message if it 
wishes to transition to Pipelined Mode (see section 6.1 Base 
Sockets Direct Header (BSDH)on page 13). 

3. Upon receiving the RdmaRdCompl Message, the Data Source MUST 
compare the RRCH Len field against the length of the oldest, 
incomplete SrcAvail advertisement. If the send RDMA Buffer has 
not been completely transferred, the Data Source MUST wait until 
the SrcAvail Message has been Processed by an ensuing 
RdmaRdCompl Message or a SendSm Message. Once the send RDMA 
Buffer is completed, this may map to completion of a send ULP 
Buffer, as appropriate. 

Data advertised by SrcAvail MUST remain available for Read Zcopy 
by the Data Sink until its consumption has been acknowledged 
with RdmaRdCompl Message(s), a SendSm Message is received from 
the Data Sink, the SrcAvail Message has been overridden because 
of a SinkAvail Message (see section 11.3 Pipelined Mode on page 
81), or the Data Source has Processed a SrcAvailCancel sequence 
(see section 9.5.4 SrcAvail Revocation on page 69). 

Note the portions of the RDMA Read buffer that have been 
completed by an RdmaRdCompl are no longer required to be 
available for RDMA Read.  

The Data Sink SHOULD send the final RdmaRdCompl Message for an 
RDMA Read Buffer with the Send with SE and Invalidate iWARP 
Message to invalidate the STag associated with that RDMA Read 
Buffer. If the Data Sink does not use the Send with SE and 
Invalidate iWARP Message for RdmaRdCompl, it MUST use the Send 
with SE iWARP Message. 

If the Data Sink used the iWARP remote invalidate feature, then 
the Data Source MUST verify that the invalidated STag was the 
same STag that was sent in the original SrcAvail Message - and 
if it was not the same STag, the Data Source MUST view this as a 
protocol violation. If the Data Sink did not use the remote 
invalidate feature, the Data Source should locally invalidate 
the advertised STag (If the Data Source does not invalidate the 
advertised STag, there are security implications. See [RDMAP-
SECURITY] for additional details).  

If a SendSm Message is received at the Data Source, the Data 
Source MUST match the SendSm Message with the oldest, incomplete 
SrcAvail advertisement. The Data Source MUST view this SrcAvail 
as Processed and MUST send the remaining ULP data using Data 
Messages (see section 9.1 Bcopy on page 55). The Data Sink MUST 
consume this data before sending an RdmaRdCompl for other 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  59 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

SrcAvail Messages (this condition can only occur in Pipelined 
Mode - see section 11.3 Pipelined Mode on page 81).  

Upon receiving a SendSm Message, the Data Source MUST complete 
the oldest incomplete SrcAvail advertised buffer using Data 
Message(s). After sending a SendSm Message, the Data Sink MUST 
wait until it has received all of the data that was advertised 
in the corresponding SrcAvail before sending any RdmaRdCompl 
Message, even for another advertised buffer. 

Note that  the Data Sink calculates the number of remaining bytes 
expected through Data Messages by subtracting from the SrcAH length 
field the sum of the number of bytes that the Data Sink has 
acknowledged with RdmaRdCompl Message(s) plus the amount of ULP 
payload included in the SrcAvail Message (if any). 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  60 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

                                     Data Source         Data Sink 
                                          |                   | 
                                          |  SrcAvail         | 
   This ladder diagram shows the Data     |  Message          | 
   Source sending a send RDMA Buffer      |------------------>| 
   advertisement (SrcAvail Message) to    |                   | 
   the Data Sink. The Data Sink initiates |  /----------------| 
   one or more RDMA Read(s) to transfer   | / /...............| 
   source ULP data. When the RDMA Read(s) |/ / ...............| 
   completes, an RdmaRdCompl Message is   |\/ /               | 
   sent to the Data Source. Further RDMA  |/\/    RDMA Read   | 
   Read(s) and RdmaRdCompl Messages may   |\/\                | 
   be necessary to consume the entire     |/\ \-------------->| 
   source buffer.                         |\ \...............>| 
                                          | \................>| 
                                          |                   | 
                                          |     RdmaRdCompl   | 
                                          |     Message       | 
                                          |<------------------| 
                                          |                   | 
                                          |  /----------------| 
                                          | / ................| 
                                          |/ / ...............| 
   .......... Optional Message            |\/ /               | 
                                          |/\/    RDMA Read   | 
                                          |\/\                | 
                                          |/\ \-------------->| 
                                          |\ \...............>| 
                                          | \................>| 
                                          |                   | 
                                          |     RdmaRdCompl   | 
                                          |     Message       | 
                                          |<------------------| 
                                          |                   | 
 

Figure 21 Ladder Diagram for Read Zcopy Mechanism 

When the Data Sink sends multiple RdmaRdCompl Messages for a single 
SrcAvail advertisement, the Data Sink MUST set the RdmaRdCompl 
Message length field to the number of bytes transferred since the 
last RdmaRdCompl was sent for this SrcAvail advertisement. 

It is possible to create a deadlock if, at the same time, both ULP 
peers post send data suitable for Read Zcopy and both ULPs wait for 
the associated send to complete before posting a receive. A SrcAvail 
Message could be sent by each SDP peer, but no ULP receive buffer 
would be posted. This deadlock is possible when all of the following 
are true:  

* A SrcAvail is received; and 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  61 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

* No ULP receive buffer is posted; and  

* The local Data Source has a SrcAvail outstanding. 

When these conditions are true, a deadlock can be avoided in a 
variety of ways: 

* The Data Sink could send a SendSm Message to force the use 
of the Bcopy Data Transfer Mechanism. 

* The Data Source could send a SrcAvailCancel Message and then 
complete the ULP write using the Bcopy Data Transfer 
Mechanism. 

* The Data Sink could complete the Read Zcopy using a local 
buffer, holding that data until the ULP posts a receive. 

Regardless of the method used, it is strongly RECOMMENDED that SDP 
implementations detect and recover from this deadlock situation. 

9.3 Write Zcopy 

This mechanism MUST transfer data through the following sequence of 
operations: 

1. The Data Sink sends a SinkAvail Message to the Data Source when 
a suitable receive ULP Buffer is posted (note that the ULP 
Buffer MUST be larger than the size of the local receive Private 
Buffers - see section 9.5.1 Detecting Stale SinkAvail 
Advertisements on page 65). If Write Zcopy is chosen, the ULP 
Buffer is referred to as a receive RDMA Buffer (the receive RDMA 
Buffer may actually be a Private Buffer from where receive data 
is copied to the ULP Buffer - this is implementation-dependent).  

The SinkAH Len, VA, and STag fields MUST describe the entire 
Data Sink RDMA Buffer and MUST reference the same Data Sink RDMA 
Buffer. The Data Sink MUST set a value in the NonDiscards field 
as specified in section 6.3.3.4 NonDiscards - 32 bits on page 
24. 

2. The Data Source receives the SinkAvail Message and waits for the 
ULP to post a send buffer. If the Data Source determines the 
buffer is suitable for Write Zcopy, it MUST use one or more RDMA 
Writes to transfer ULP data to the Data Sink. If the Data Source 
determines the buffer is unsuitable for Write Zcopy, it MUST use 
the protocol described under section 9.5.2.2 Data Source Forcing 
Bcopy on page 67.  

After the RDMA Write(s) complete, the Data Source MUST send a 
single RdmaWrCompl Message to the Data Sink, unless the 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  62 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

operation was canceled. The Data Source SHOULD send the 
RdmaWrCompl Message using Send with SE and Invalidate to 
invalidate the STag associated with the completed RDMA Buffers 
at the Data Sink. If the Data Source does not use the Send with 
SE and Invalidate iWARP Message for RdmaWrCompl, it MUST use the 
Send with SE iWARP Message. 

If the Data Source used the iWARP remote invalidate feature, 
then the Data Sink MUST verify that the invalidated STag was the 
same STag that was sent in the original SinkAvail Message - and 
if it was not the same STag, the Data Sink MUST view this as a 
protocol violation. If the Data Source did not use the remote 
invalidate feature, the Data Sink should locally invalidate the 
advertised STag (If the Data Sink does not invalidate the 
advertised STag, there are security implications. See [RDMAP-
SECURITY] for additional details).  

The RdmaWrCompl header MUST contain the size (in bytes) of data 
transferred through the RDMA Write(s). 

3. Upon receiving the RdmaWrCompl Message, the Data Sink MUST match 
the RdmaWrCompl Message to the oldest incomplete SinkAvail 
advertisement and MUST consider the SinkAvail advertisement 
Processed. Once the receive RDMA Buffer is Processed, this may 
map to completion of a receive ULP Buffer, as appropriate. If 
the RdmaWrCompl Message did not include a remote invalidate, the 
Data Sink may invalidate the advertised STag.  

A Data Sink RDMA Buffer advertised by SinkAvail MUST remain 
available for Write Zcopy from the Data Source until it has been 
acknowledged with an RdmaWrCompl Message, the SinkAvail was canceled 
due to a Data Message (see section 9.5.1 Detecting Stale SinkAvail 
Advertisements on page 65), or the advertisement has been revoked, 
(and the revoke request has been Processed - see section 9.5.5 
SinkAvail Revocation on page 70). 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  63 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

                                      Data Source         Data Sink 
        This ladder diagram shows the        |                 | 
        Data Sink sending a receive RDMA     |   SinkAvail     | 
        Buffer advertisement (SinkAvail      |   Message       | 
        Message) to the Data Source. The     |<----------------| 
        Data Source transmits source ULP     |                 | 
        Data when available by using an      |   RDMA Write    | 
        RDMA Write followed by a             |---------------->| 
        RdmaWrCompl Message.                 |................>| 
                                             |................>| 
                                             |                 | 
        .......... Optional Message          |                 |   
                                             | RdmaWrCompl     | 
                                             |   Message       | 
                                             |---------------->| 
                                             |                 | 
 

Figure 22 Ladder Diagram for Write Zcopy Mechanism 

Some socket implementations support an option to ensure that receive 
ULP Buffers are completely filled before they are returned to the 
ULP. This is typically implemented as a flag called MSG_WAITALL that 
is specified when a receive ULP Buffer is posted. If the MSG_WAITALL 
socket option is supported by the Data Sink implementation, the Data 
Sink MUST disable Write Zcopy for ULP Buffers that have MSG_WAITALL 
set by not sending SinkAvail advertisements to the Data Source. 
Enabling Write Zcopy for buffers with MSG_WAITALL breaks the ULP 
Buffer accounting algorithm that addresses crossing SinkAvail and 
Data Messages (see section 9.5.1 Detecting Stale SinkAvail 
Advertisements on page 65). If the ULP Buffer accounting algorithm 
is used, then the Data Sink must partially complete the ULP Buffer  
when a Data Message and SinkAvail Message cross. Disabling SinkAvail 
prevents this condition, thus enabling the receive ULP Buffer to be 
completely filled in all scenarios. Note that the setting of 
MSG_WAITALL flag for a receive buffer does not restrict the use of 
Read Zcopy or Bcopy Data Transfer Mechanisms. 

9.4 Transaction Mechanism 

If the ULP is transaction oriented, typically one peer is sending 
short command messages and medium to long reply messages are 
expected. It is possible to optimize this transfer model by 
collapsing the SinkAvail advertisement for the reply's receive RDMA 
Buffer with the Data Message for the command. This enables Zero-copy 
receives on potentially smaller replies as well as reducing control 
traffic. Note that the SinkAvail Message is used to transfer ULP 
payload that is being sent in the opposite direction of the Data 
Message. In order for that SinkAvail to be generated, the Flow 
Control Mode needs to be Pipelined Mode (see section 11.3 Pipelined 
Mode on page 81). Furthermore, the receive RDMA Buffer for the 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  64 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

SinkAvail advertisement needs to be larger than the local receive 
Private Buffer size (see section 9.5.1 Detecting Stale SinkAvail 
Advertisements on page 65). 

If an end point receives a SinkAvail Message with ULP payload, the 
Data Source SHOULD use RDMA Writes to fill the advertised RDMA 
Buffer unless prior ULP payload-carrying SDP Messages effectively 
canceled this SinkAvail advertisement (see section 9.5.1 Detecting 
Stale SinkAvail Advertisements on page 65). 

Figure 23 Ladder Diagram of Transaction Mechanism on page 64 shows 
the collapsing of the Data Message into the SinkAvail advertisement. 
ULP peer A is communicating with ULP peer B, with a traffic pattern 
that appears as though it is transactional. Peer A is repetitively 
sending peer B a single small ULP message (this is the command) and 
then immediately posting a receive ULP Buffer (this is the reply). 
Without the piggyback mechanism, two SDP Messages could potentially 
be generated by peer A.  

 

           Non-Optimized                          Optimized 
           Transaction                            Transaction 
 
  Peer A               Peer B             Peer A             Peer B 
      |                  |                  |                  | 
      |                  |                  |  SinkAvail       | 
      |  Data Message    |                  |  Message with    | 
      |----------------->|                  |  payload         | 
      |                  |                  |----------------->| 
      |  SinkAvail       |                  |                  | 
      |  Message         |                  |  RDMA Write      | 
      |----------------->|                  |<-----------------| 
      |                  |                  |<.................| 
      |  RDMA Write      |                  |<.................| 
      |<-----------------|                  |                  | 
      |<.................|                  |  RdmaWrCompl     | 
      |<.................|                  |  Message         | 
      |                  |                  |<-----------------| 
      |  RdmaWrCompl     |                  |                  | 
      |  Message         |                  |                  | 
      |<-----------------|                  |                  | 
 
.......... Optional Message 
 
 

    Figure 23 Ladder Diagram of Transaction Mechanism 

ULP peer B is consistently waiting for reception of a command before 
posting a send ULP Buffer for the reply. If the Transaction 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  65 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

mechanism was not available and the SinkAvail advertisement was not 
received before the reply was posted by the ULP, the reply Data 
Source would have to choose whether to wait for the SinkAvail 
advertisement, generate a SrcAvail advertisement, or transfer the 
ULP data using the Bcopy mechanism. With the Transaction mechanism, 
the logic is straightforward. The reply Data Source MAY use the 
Write Zcopy mechanism to transfer the reply. If the reply ULP Buffer 
is not suitable for RDMA Write, the Data Source MAY send the reply 
data using the Bcopy mechanism. All Pipelined Mode rules apply (see 
section 11.3 Pipelined Mode on page 81). 

9.5 Miscellaneous Data Transfer Issues 

9.5.1 Detecting Stale SinkAvail Advertisements  

SDP allows the Data Source to send ULP data through SDP Messages. 
This creates an issue in Pipelined Mode because a SinkAvail 
advertisement could cross an SDP Message containing ULP data that is 
destined for the same receive ULP Buffer that was advertised in the 
SinkAvail Message. The receive ULP Buffer could be at least 
partially satisfied through the Data Message. This effectively 
requires the Data Source to view the receive RDMA Buffer 
advertisement as outdated or stale. 

The Data Sink MUST only send a SinkAvail advertisement if the RDMA 
Buffer is larger than the local receive Private Buffer size. 

This also means that the Data Sink MUST set its Bcopy Threshold to 
be larger than or equal to the receive Private Buffer size. 

SDP MUST use the following algorithm to enable the Data Source to 
detect and recover from stale SinkAvail advertisements: 

1. If a ULP receive RDMA Buffer R has been advertised through a 
SinkAvail Message and one or more SDP Messages with ULP payload 
(Data or SinkAvail Message with ULP payload) arrives at the Data 
Sink, then the Data Sink MUST copy the ULP payload of exactly 
one SDP Message into R and MUST return R to the ULP. In other 
words, R will not consume the ULP payload of more than one SDP 
Message. 

In Pipelined Mode, the Data Sink MUST use the ULP payload of 
only one SDP Message (Data Message or SinkAvail) to complete any 
one RDMA Buffer advertised through SinkAvail. 

If a receive ULP Buffer has not been advertised through a 
SinkAvail Message, that buffer MAY consume the ULP payload of 
more than one SDP Message. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  66 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

2. The Data Source MUST keep a 32-bit counter, 
PotentialNonDiscards, which tracks the number of SDP Messages 
carrying ULP payload that the Data Source has sent that might 
not cause a SinkAvail Message to be discarded. The 
PotentialNonDiscards counter MUST be initialized to zero and 
MUST wrap to zero after reaching 0xFFFFFFFF.  

3. The Data Source, upon sending an SDP Message carrying ULP 
payload, MUST increment PotentialNonDiscards by one. 

4. At the Data Source: 

The Data Source MUST execute the following pseudo-code for each 
received SinkAvail advertisement before initiating a Write Zcopy 
data transfer using the advertised buffer. If ULP payload is 
present in the SinkAvail, the Data Source MUST process the ULP 
payload normally regardless of whether the SinkAvail was 
discarded. 

    If (SinkAvail.NonDiscards != PotentialNonDiscards) 
      Discard(SinkAvail) 
      PotentialNonDiscards-- 

    Else 
      Process SinkAvail normally 

For example, if PotentialNonDiscards=2 and the Data Source has 
three SinkAvail advertisements, all with NonDiscards=0, then the 
first two advertisements are discarded as stale and RDMA is 
initiated on the third advertisement. 

Note that this algorithm can cause receive ULP Buffers to be 
partially filled when completed. If a ULP Buffer is required to be 
completely filled, an SDP implementation should not advertise the 
ULP Buffer with a SinkAvail Message. See section 9.3 Write Zcopy on 
page 61 for additional details. 

Detecting stale SinkAvail advertisements is one mechanism that 
causes a SinkAvail advertisement to be discarded. Section 12.4 
Transition From Pipelined Mode to Combined Mode on page 86 defines a 
different circumstance when a SinkAvail Message must be discarded. 

9.5.2 Mechanisms for Forcing Bcopy 

9.5.2.1 Data Sink Forcing Bcopy 

While in Combined or Pipelined Modes, if the Data Sink determines 
that its buffer is unsuitable for use with Read Zcopy from an RDMA 
Buffer advertised by the Data Source, the Data Sink can use the 
SendSm Message to force the Data Source to send data through the 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  67 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Bcopy mechanism (i.e., through Data Messages). The Data Sink MAY 
send the SendSm Message after receiving a SrcAvail Message.  

Upon receiving the SendSm Message, the Data Source MUST send all 
remaining ULP data (advertised in the associated SrcAvail Message) 
using Data Messages. 

The Data Sink MUST process SrcAvail Messages in MSeq order as 
described in section 10.1 SDP Message Ordering on page 73. For each 
SrcAvail Message received, the Data Sink MUST either proceed with 
the appropriate RDMA Data Transfer Mechanism (Read Zcopy if a 
SinkAvail advertisement did not cross, or wait for an RdmaWrCompl if 
a crossing occurred - see section 11.3 Pipelined Mode on page 81) or 
it MUST respond with a SendSm Message.  

The Data Source MUST respond to the SendSm request by matching it to 
the oldest incomplete SrcAvail advertisement and then sending the 
remaining ULP data for the SrcAvail advertisement (i.e., that has 
not been Processed by RdmaRdCompl Message(s) from the Data Sink or 
already sent as ULP payload in the SrcAvail Message) through the 
Bcopy mechanism. 

Implementation note: in some cases the Data Source and Data Sink 
could have different Bcopy Threshold values. When the Data Source 
advertises an RDMA Buffer whose size is greater than the Data 
Source’s Bcopy Threshold but less than the Data Sink’s Bcopy 
Threshold, the Data Sink could choose to force a Bcopy. However, 
since the Data Source has already invested in setting up a Read 
Zcopy data transfer, the Data Sink should give special consideration 
to cooperating with the Data Source’s attempt to use Read Zcopy. 
Note that the Data Sink is free to force a Bcopy if it determines 
that for any reason its buffer is unsuitable for Read Zcopy. 

9.5.2.2 Data Source Forcing Bcopy 

While in Pipelined Mode, if the Data Source determines that its 
buffer is unsuitable for use with Write Zcopy to an RDMA Buffer 
advertised by the Data Sink, the Data Source MAY choose to not use 
the Data Sink’s RDMA Buffer advertisement, and instead use Data 
Messages to send data using the Bcopy Data Transfer Mechanism. In 
this case, the Data Source and Data Sink MUST follow the protocol 
described in section 9.5.1 Detecting Stale SinkAvail Advertisements 
on page 65. 

Implementation note: in some cases the Data Source and Data Sink 
could have different Bcopy Threshold values. When the Data Sink 
advertises an RDMA Buffer whose size is greater than the Data Sink’s 
Bcopy Threshold but less than the Data Source’s Bcopy Threshold, the 
Data Source could choose to force a Bcopy. However, since the Data 
Sink has already invested in setting up a Write Zcopy data transfer, 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  68 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

the Data Source should give special consideration to cooperating 
with the Data Sink’s attempt to use Write Zcopy. Note that the Data 
Source is free to force a Bcopy if it determines that for any reason 
its buffer is unsuitable for Write Zcopy. 

9.5.3 Processing Out-Of-Band Data 

When the Data Source ULP posts Out-Of-Band data (a single byte) to 
be transmitted, the SDP implementation MUST preserve the ordering of 
the Out-Of-Band data in the output byte stream. 

The precise mechanism for conveying OOB data requests from the ULP 
to the SDP implementation is outside the scope of this 
specification. 

Once the ULP has indicated that a particular byte in its output 
stream should be marked as Out-Of-Band data, the SDP implementation 
MUST notify the Remote Peer that Out-Of-Band data is pending by 
setting the OOB_PEND flag on an outgoing SDP Message. It is 
RECOMMENDED that this notification be accomplished in an expeditious 
fashion; however, the only requirements levied by the specification 
are as follows: 

* The OOB_PEND flag MUST be sent exactly once for each OOB 
data indication. 

* The OOB_PEND flag MUST be set on an SDP Message that is sent 
no later than the SDP Message containing the Out-Of-Band 
data byte. 

* The implementation MUST, if necessary, delay sending the 
OOB_PEND flag to ensure that no more than 65,535 (2^16-1) 
bytes of data are sent between the flag and its associated 
Out-Of-Band data byte. This includes all ULP data sent by 
any SDP Data Transfer Mechanism, including any data sent in 
or advertised by the SDP Message containing the OOB_PEND 
flag. 

Note that an implementation MAY send an SDP Message with the 
OOB_PEND flag using a reserved credit. See section 10.5 Use of Send 
Credits on page 74. 

When the output byte-stream advances to the point where the Out-Of-
Band data was inserted into the data stream by the ULP, the Data 
Source MUST send the Out-Of-Band data using a Data Message with the 
OOB_PRES bit set and the Out-of-Band data byte as the last byte of 
the ULP payload in the Data Message. 

Upon receipt of an SDP Message with the OOB_PEND flag set, it is 
RECOMMENDED that the SDP implementation expeditiously notify the ULP 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  69 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

that OOB data is pending; however, the precise mechanism for 
conveying OOB notifications from the SDP implementation to the ULP 
is outside the scope of this specification. 

9.5.4 SrcAvail Revocation 

To revoke all incomplete SrcAvail Messages sent by the Data Source 
to the Data Sink, the Data Source MUST send a SrcAvailCancel 
Message. This is needed, for example, if the ULP performs a socket 
write and a timeout capability is supported. If the timeout interval 
passes without successful completion of the transfer, the Data 
Source needs to cancel all RDMA Buffers advertised on behalf of the 
socket write. Rather than create a new SDP Message type to 
explicitly acknowledge the SrcAvailCancel Message, the SendSm 
Message is used because it can be unambiguously understood to 
complete the cancel operation. 

The Data Sink, upon receiving the SrcAvailCancel Message, MUST 
discard all Unprocessed SrcAvail Messages (SrcAvail Messages that 
have not been operated on), and SHOULD discard all In-Process 
SrcAvail Messages (RDMA Read processing has started, but an 
RdmaRdCompl or SendSm Message to complete the SrcAvail advertisement 
has not been sent) -- see details below. If all SrcAvail Messages 
have been Processed, then the Data Sink MUST ignore the 
SrcAvailCancel Message.  

Note that if a SrcAvail Message is In-Process at the Data Sink 
(i.e., it has initiated one or more RDMA Reads), the RDMA Read 
cannot be canceled. Because of this and potential head-of-queue 
blocking due to the mix of control and data on the same connection, 
it may be some time before the SrcAvail Message is actually 
canceled. 

The Data Sink MUST NOT update the value of MSeqAck to be sent in SDP 
Messages to greater than or equal to the MSeq value, with wrap, in 
the SrcAvailCancel Message until all In-Process SrcAvail 
advertisements have been completed with the following sequence of 
events: 

1. The Data Sink MUST NOT initiate any new RDMA Reads. 

2. After completion of all In-Process RDMA Reads, the Data Sink 
MUST send any relevant RdmaRdCompl Messages (this may or may not 
complete the SrcAvail Message, depending on how many bytes have 
been consumed). 

3. If there is more ULP data that has not been transferred from the 
original SrcAvail Message, the Data Sink MUST cancel the 
remainder of the SrcAvail advertisement. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  70 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

If the Data Sink canceled one or more SrcAvail advertisements 
(either Unprocessed or In-Process), the Data Sink MUST send exactly 
one SendSm Message associated with the oldest incomplete SrcAvail 
Message. 

The Data Source, after sending a SrcAvailCancel Message, MUST NOT 
send any new SrcAvail Messages until the SrcAvailCancel Message has 
been Processed as defined below. 

This enables the Data Sink to implement simpler accounting (i.e., 
not have to account for whether a SrcAvail Message was sent before 
or after the SrcAvailCancel Message). 

The Data Source MUST consider the SrcAvailCancel Message Processed 
if any of the following occur: 

* All Unprocessed or In-Process SrcAvail Messages have been 
moved to the Processed state with an RdmaRdCompl Message or 
have been overridden by a SinkAvail Message (see section 
11.3 Pipelined Mode on page 81). 

* A SendSm Message is received with an MSeqAck value greater 
than or equal to the MSeq value in the SrcAvailCancel 
Message. 

9.5.5 SinkAvail Revocation 

To revoke all incomplete SinkAvail advertisements sent by the Data 
Sink to the Data Source, the Data Sink MUST send the SinkAvailCancel 
Message. This is needed, for example, if the ULP performs a socket 
read and a timeout capability is supported. If the timeout interval 
passes without successful completion of the transfer, all RDMA 
Buffers advertised on behalf of the socket read need to be canceled. 

The Data Source, upon receiving the SinkAvailCancel Message, MUST 
discard all Unprocessed SinkAvail advertisements (SinkAvail Messages 
that have not been operated on) and SHOULD cancel all In-Process 
SinkAvail Messages (RDMA Write processing has started, but an 
RdmaWrCompl Message that completes the SinkAvail advertisement has 
not been sent) - see details below. If all SinkAvail advertisements 
have been Processed, the Data Source MUST ignore the SinkAvailCancel 
Message.  

Because an RDMA Write cannot be canceled when a SinkAvail Message is 
In-Process at the Data Source (i.e., it has initiated one or more 
RDMA Writes), the Data Source MUST send an RdmaWrCompl Message after 
the RDMA Write completes. Because of this and potential head-of-
queue blocking due to the mix of control and data on the same 
connection, it may be some time before the SinkAvail Message is 
actually canceled. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  71 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

The Data Source MUST complete the buffer with the following sequence 
of events: 

1. The Data Source MUST NOT initiate any new RDMA Writes. 

2. After completion of the In-Process RDMA Writes, the Data Source 
MUST send any relevant RdmaWrCompl Messages (this may or may not 
complete the SinkAvail Message, depending on how many bytes have 
been consumed). 

3. If there is more ULP data that has not been transferred into the 
RDMA Buffer advertised by the SinkAvail Message, the Data Sink 
MUST discard the remainder of the SinkAvail advertisement.  

If the Data Source canceled one or more SinkAvail advertisements 
(either Unprocessed or In-Process), the Data Source MUST send 
exactly one SinkCancelAck Message.  

The Data Sink, after sending the SinkAvailCancel Message, MUST NOT 
send a new SinkAvail or SinkAvailCancel Message until all previous 
SinkAvail Messages have been Processed, as defined below. 

This enables the Data Source to implement simpler accounting (i.e., 
not have to account for whether a SinkAvail Message was sent before 
or after the SinkAvailCancel Message).  

The Data Sink MUST consider the SinkAvailCancel Message Processed if 
any of the following occur: 

* All Unprocessed or In-Process SinkAvail Messages have been 
moved to the Processed state with an RdmaWrCompl Message 
(i.e., the byte count returned in the RdmaWrCompl completely 
consumed the buffer). 

* A Data Message that adhered to the stale advertisement rules 
is received (see section 9.5.1 Detecting Stale SinkAvail 
Advertisements on page 65).  

* A SinkCancelAck Message is received. 

9.5.6 Buffering ULP Payload 

Under certain conditions it is possible for a sockets application to 
deadlock unless ULP payload is buffered by the underlying sockets 
implementation. For example, if all of the following occur: 

1. Both ULP peers perform a sockets send followed by a sockets 
receive,  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  72 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

2. both ULP peers do not post the receive buffer until the send is 
completed, and 

3. the underlying sockets implementation does not buffer the send 
data 

then the send will never complete - thus creating deadlock. To solve 
deadlock conditions in the most general case (i.e., infinite length 
sends) is intractable, thus existing sockets applications bound the 
amount of buffering required by the transport layer through the use 
of the socket options SO_RCVBUF and SO_SNDBUF.  

An application whose behavior is similar to the above example will 
not deadlock if the application ensures that a send is never larger 
than the size of the Local Peer’s SO_RCVBUF plus the Remote Peer’s 
SO_SNDBUF, and the SDP implementation ensures there is SO_RCVBUF 
plus SO_SNDBUF amount of buffering in the local and Remote Peer 
respectively.  

An application may post buffers larger than SO_RCVBUF plus SO_SNDBUF 
- but to remain deadlock free it must ensure that it does not 
exhibit the above behavior (e.g., a backup application could post 
large sends in one direction after it is sure the Remote Peer is 
posting receives).  

Specification of the exact buffering algorithm is beyond the scope 
of this specification, but care must be taken if the receive Private 
Buffer pool is used as part of the SO_RCVBUF buffers. This is 
because an entire receive Private Buffer may, in some situations, 
contain only one byte of ULP data instead of being filled 
completely.  

Thus an SDP implementation SHOULD provide at least SO_RCVBUF amount 
of buffering for ULP data at the Data Sink. An SDP implementation 
SHOULD also provide at least SO_SNDBUF amount of ULP data buffering 
at the Data Source.  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  73 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

10 Private Buffer Management 

SDP uses credit-based flow control on a per-socket connection basis. 
Each peer, for each connection, posts some number of Private Buffers 
as receive requests to the Receive Queue of the QP associated with 
the socket. The number of currently posted receive Private Buffers 
is advertised by the Local Peer to the Remote Peer in the Bufs field 
in the BSDH of each SDP Message. 

Private Buffers MUST obey the following enumerated constraints: 

1. All receive Private Buffers MUST be at least as large as the 
advertised buffer size. See section 10.6 Receive Buffer Resizing 
on page 75 for receive Private Buffer constraints when resizing. 

2. The total number of receive Private Buffers MUST be at least 3 
per-connection for normal data flow. See section 10.5 Use of 
Send Credits on page 74 for detail on how send credits are used. 
It is RECOMMENDED the number of receive Private Buffers be 
substantially greater than 3 to enable practical data transfer 
using the Bcopy mechanism. 

3. A Local Peer MUST NOT send SDP Messages larger than the size of 
the Remote Peer’s receive Private Buffers. 

4. The sizes of both send and receive Private Buffers MUST be at 
least the size of the BSDH plus the size of the largest extended 
header in an SDP Message (which is SinkAH) plus one byte. 

5. The Data Sink Bcopy Threshold MUST be greater than or equal to 
the size of the Local Peer’s receive Private Buffers.  

In addition, send buffers MAY obey the following constraint: 

* If the Local Peer’s send buffer size is larger than the 
Remote Peer’s receive Private Buffer size, the Local Peer 
MAY reduce the size of its send buffers or leave them 
unmodified. The latter approach may be advantageous if the 
Remote Peer enlarges its receive Private Buffers at a later 
time. 

10.1 SDP Message Ordering 

The SDP sender MUST insert SDP Messages into the Send Queue in BSDH 
MSeq order. 

This means the SDP Message MSeq value in the BSDH will be 
monotonically increasing in the Send Queue. The SDP receiver MUST 
process all SDP Messages in BSDH MSeq order. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  74 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

10.2 Send Credit Calculation 

Send credit is calculated using information in the BSDH included 
with each SDP Message. 

Consider the case of peer 1 sending an SDP Message to its connected 
peer, peer 2. The header of the SDP Message includes the number of 
receive Private Buffers peer 1 currently has posted on that 
connection (in the Bufs field of the BSDH). The header also includes 
the sequence number of the last SDP Message peer 1 has received 
before sending this SDP Message (in the MSeqAck field of the BSDH - 
see section 9.5.4 SrcAvail Revocation on page 69 for additional 
constraints on MSeqAck). Upon receiving this SDP Message, peer 2 
uses this information to update its send credit for that connection: 

New send credit = bufs - WrapSubtract(LSSeq - MSeqAck) 

where LSSeq (“Last Sent Sequence number”) is the MSeq of the last 
SDP Message sent by peer 2.  

See section 10.5 below for the detailed rules governing usage of 
available send credits. 

10.3 Initialization of Send Credit 

Initial send credit advertisements are exchanged during connection 
setup in the Buf field of the BSDH within the Hello and HelloAck 
Messages. The initial send credit advertisements from each peer MUST 
be greater than or equal to three. Either before or after connection 
setup, the receiver MAY post additional receive Private Buffers and 
increase the advertised window. 

10.4 Gratuitous Update of the Remote Peer’s Send Credit 

As previously mentioned, credit updates are included in the header 
of each SDP Message. Therefore, when ULP data flow is such that SDP 
Message flow is bi-directional (e.g., when doing Zcopy data 
transfer), credits are refreshed as part of the data transfer 
process. In some scenarios, bi-directional SDP Message flow does not 
occur. Under these circumstances, SDP MUST send gratuitous Data 
Messages (Data Messages with no ULP payload) as required to update 
the Remote Peer's send credit. 

10.5 Use of Send Credits 

The sender MUST reserve two receive Private Buffer credits to ensure 
the SDP connection operates correctly under flow controlled 
conditions. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  75 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

The sender MUST reserve one credit for an SDP Message that provides 
additional credits. If this credit is not reserved, a deadlock 
scenario is possible if both peers become flow controlled. Reserving 
a receive Private Buffer for the flow control update ensures that 
the sender can always update the receiver when more receive Private 
Buffers are posted. 

The sender MUST reserve one additional credit for sending any SDP 
Message that does not contain ULP payload. This ensures that the 
credit can be refreshed by the Remote Peer without depending upon 
ULP receive behavior. If ULP payload is allowed to be present in the 
SDP Message, it is possible to have protocol deadlock. 

Before sending any SDP Message over the connection, an SDP 
implementation MUST compute its available send credit as detailed in 
section 10.2, and MUST then obey the following rules: 

* If no credits are available, an implementation MUST NOT send 
any type of SDP Message. 

* If one credit is available, an implementation MUST only send 
SDP Messages that provide additional credits and do not 
contain ULP payload.  

* If two credits are available, an implementation MUST only 
send SDP Messages that do not contain ULP payload. 

* An SDP implementation MUST send an SDP Message that provides 
additional credit(s) if the Remote Peer's credits drop to 
one or fewer credits. The sending of this SDP Message by the 
Local Peer MUST NOT be contingent upon the Local Peer first 
receiving some other SDP Message from the Remote Peer. 

Note that if three or more credits are available, an implementation 
can send any type of SDP Message that would otherwise be legal. 

10.6 Receive Buffer Resizing 

The Local Peer MAY request the Remote Peer to change its receive 
Private Buffer pool buffer size by sending a Change Receive Buffer 
Message (ChRcvBuf) with the desired new size. This enables the Local 
Peer to increase or decrease the maximum size of its outgoing SDP 
Messages if the Remote Peer agrees to the change. See section 10 
Private Buffer Management on page 73 for restrictions on the size of 
the receive Private Buffers. 

If the Local Peer requests a smaller receive Private Buffer in the 
ChRcvBuf Message, the Local Peer MUST begin using the smaller size 
immediately after sending the ChRcvBuf Message. If the Local Peer 
requests a larger receive Private Buffer in the ChRcvBuf Message, 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  76 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

the Local Peer MUST NOT change the local value for the size of the 
Remote Peer’s receive Private Buffers until it receives a 
ChRcvBufAck Message. When the Local Peer receives the ChRcvBufAck 
Message, it SHOULD begin using the returned value for the size of 
the Remote Peer’s receive Private Buffers immediately. 

The Remote Peer SHOULD change the size of its receive Private 
Buffers to the desired size specified in the ChRcvBuf Message; it 
MAY make them larger than the desired size, for example for 
alignment or performance optimization. If the Remote Peer is unable 
or unwilling to change its receive Private Buffer size in this 
manner, it SHOULD change the size to be as close as possible. 

Upon receipt of the ChRcvBuf Message, if the Local Peer requests a 
decrease, the Remote Peer MUST either decrease the size or leave it 
unchanged, and it MUST NOT decrease the Private Buffer size to be 
smaller than that requested. Conversely, if the Local Peer requests 
an increase, the Remote Peer MUST either increase the size or leave 
it unchanged. 

To confirm the change, the Remote Peer MUST send a ChRcvBufAck 
Message with the new size of its receive Private Buffers. The Remote 
Peer MAY send a ChRcvBufAck Message immediately if the new size is 
smaller than or equal to the old size. If the new size is larger 
than the old size, the Remote Peer MUST send a ChRcvBufAck Message 
after all receive Private Buffers of the old size have been 
consumed. If the Remote Peer is unable to resize its receive Private 
Buffers, it MUST specify in the ChRcvBufAck Message the original 
receive Private Buffer size. 

The Remote Peer MUST continue to use the old receive Private Buffer 
size to determine whether a SinkAvail Message can be sent for a 
specific ULP Buffer until it has sent the ChRcvBufAck Message. At 
that time, the Remote Peer MUST use the new receive Private Buffer 
size to determine whether a SinkAvail Message may be sent. 

If the ChRcvBuf Message requested an increased size and the 
ChRcvBufAck Message contains a size that is the same as the original 
size before the ChRcvBuf Message was sent, then the Local Peer MUST 
NOT request any further size increases for this connection. 

If the ChRcvBuf Message requested a decreased size and the 
ChRcvBufAck Message contains a size that is the same as the original 
size before the ChRcvBuf Message was sent, then the Local Peer MUST 
NOT request any further size decreases for this connection. 

The Local Peer MUST NOT send a new ChRcvBuf Message if there is an 
unacknowledged ChRcvBuf Message. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  77 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

10.6.1 Conflict Resolution 

If both peers concurrently send each other ChRcvBuf Messages, then 
the Accepting Peer MUST disregard the ChRcvBuf Message.  

The Connecting Peer MUST respond to the ChRcvBuf Message. The 
Connecting Peer MAY re-send its ChRcvBuf Message after sending the 
ChRcvBufAck Message in response to the Accepting Peer’s ChRcvBuf 
Message. 

10.6.2 Flow Control Issues During Resizing 

When a peer receives the ChRcvBuf Message and it decides to change 
its receive Private Buffer size in response to this request, the 
peer MUST allocate new receive Private Buffers of the desired size 
and post these Private Buffers to the Receive Queue. The peer MUST 
NOT wait for completion of all posted receive Private Buffers of the 
previous size before allocating and posting the new (different size) 
receive Private Buffers. This is required to enable the Remote Peer 
to continue sending SDP Messages that will cause the old-size 
receive Private Buffers to complete; otherwise the Remote Peer will 
stop sending SDP Messages once the channel becomes stalled and the 
reserved receive Private Buffers will not be consumed. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  78 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

11 SDP Flow Control Modes 

SDP Flow Control Modes control how ULP Buffers larger than the Bcopy 
Threshold are transferred. Data Source ULP Buffers less than or 
equal to the Bcopy Threshold MUST be sent using the Bcopy or 
Transaction mechanism (note that, because the Bcopy Threshold is 
locally defined, it may be fixed, variable, or be defined as 
infinite - which would cause the Data Source to always use the Bcopy 
mechanism). ULP Buffers larger than the Bcopy Threshold are sent in 
a variety of ways depending upon the current Flow Control Mode. The 
three Flow Control Modes are: 

* Combined Mode - the initial Mode. This Mode enables both 
Bcopy and Read Zcopy Data Transfer Mechanisms, but with only 
one outstanding Read Zcopy operation at a time. The SrcAvail 
Message contains a non-zero length ULP payload. This Mode is 
used primarily when the Data Sink ULP is not pre-posting 
receive buffers. 

* Pipelined Mode - All Data Transfer Mechanisms are valid, 
including multiple outstanding transfers at one time (with 
some limits). The SrcAvail Message contains no ULP payload. 

* Buffered Mode - only the Bcopy Data Transfer Mechanism is 
valid. The main difference between this Mode and Combined 
Mode is that the Data Source cannot generate SrcAvail 
Messages. 

In all Modes, the Data Sink MAY force the Data Source to transfer 
data via the Bcopy mechanism. In Buffered Mode, the Data Source 
always uses the Bcopy mechanism. In Combined or Pipelined Mode, the 
Data Sink MAY force data transfer using the Bcopy mechanism by 
issuing a SendSm Message. In this case, however, an extra round trip 
is required to cause the Bcopy mechanism to be used because of the 
SrcAvail/SendSm sequence. Buffered Mode eliminates this extra 
overhead. 

Pipelined Mode is the highest performance Mode. It enables multiple 
outstanding Zero-copy transfers, optimizing for either the Data Sink 
ULP Buffer being posted first (Write Zcopy) or the Data Source ULP 
Buffer being posted first (Read Zcopy). Pipelined Mode also enables 
mixing of Bcopy and Zcopy mechanisms. 

The Flow Control Mode between peers MUST be independent in each 
direction.  

For example, data flow from the Local Peer to its Remote Peer could 
use Buffered Mode in one direction, but the reverse direction could 
use Combined Mode. Figure 24 summarizes the various characteristics 
of each Mode. Figure 25 summarizes the possible actions at the Local 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  79 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Peer A for each combination of Modes between the Local Peer A and 
Remote Peer B. In the figure, a "1" in the Send or Accept column 
indicates that the specific SDP Message type is valid, but only one 
can be outstanding at a time. 

+------+---------+-----------+---------+----------+----------+--------+ 
|Mode  |Multiple |Simult.    |Data in  |Mix ULP   |Mix ULP   |List of | 
|      |Outstand |Outstand.  |SrcAvail |Data Msgs |Data Msgs |Avail   | 
|      |Zcopy    |SinkAvail &|         |w/ Write  |w/ Read   |Xfer    | 
|      |Requests |SrcAvail   |         |Zcopy     |Zcopy     |Mech.   | 
+------+---------+-----------+---------+----------+----------+--------+ 
|Buf.  |N/A      |N/A        |N/A      |N/A (Wr.  |N/A (Read |Bcopy,  | 
|      |         |           |         |Zcopy not |Zcopy not |Trans*  | 
|      |         |           |         |allowed)  |allowed)  |        | 
+------+---------+-----------+---------+----------+----------+--------+ 
|Comb. |No       |No         |Yes      |N/A (Wr.  |Yes, but  |Bcopy,  | 
|      |         |           |         |Zcopy not |not at    |Read    | 
|      |         |           |         |allowed)  |same time |Zcopy,  | 
|      |         |           |         |          |          |Trans*  | 
+------+---------+-----------+---------+----------+----------+--------+ 
|Pipe. |Yes      |Yes        |No       |Yes       |Yes, but  |Bcopy,  | 
|      |         |           |         |          |not at    |Read    | 
|      |         |           |         |          |same time |Zcopy,  | 
|      |         |           |         |          |          |Write   | 
|      |         |           |         |          |          |Zcopy,  | 
|      |         |           |         |          |          |Trans*  | 
+------+---------+-----------+---------+----------+----------+--------+ 
  *if the reverse half-connection is in Pipelined Mode 
 

Figure 24 Mode Characteristics 

 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  80 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

+-------------------+-------------------------------------------------+ 
|Half Connection    |           Host A is allowed to:                 | 
+-------------------+-------------------------------------------------+ 
| A to B  | B to A  |   Post    |       Send       |     Accept       | 
+-------------------+-----------+------------------+------------------+ 
|         |         |RDMA |RDMA |                  |                  | 
|         |         |Read |Write|Src  |Sink |Trans-|Src  |Sink |Trans-| 
|         |         | Req |     |Avail|Avail|action|Avail|Avail|action| 
+---------+---------+-----+-----+-----+-----+------+-----+-----+------+ 
|Buffered |Buffered | NO  | NO  | NO  | NO  |  NO  | NO  | NO  | NO   | 
+---------+---------+-----+-----+-----+-----+------+-----+-----+------+ 
|Buffered |Combined | YES | NO  | NO  | NO  |  NO  |  1  | NO  | NO   | 
+---------+---------+-----+-----+-----+-----+------+-----+-----+------+ 
|Buffered |Pipelined| YES | NO  | NO  | YES |  YES | YES | NO  | NO   | 
+---------+---------+-----+-----+-----+-----+------+-----+-----+------+ 
|Combined |Buffered | NO  | NO  |  1  | NO  |  NO  | NO  | NO  | NO   | 
+---------+---------+-----+-----+-----+-----+------+-----+-----+------+ 
|Combined |Combined | YES | NO  |  1  | NO  |  NO  |  1  | NO  | NO   | 
+---------+---------+-----+-----+-----+-----+------+-----+-----+------+ 
|Combined |Pipelined| YES | NO  |  1  | YES | YES  | YES | NO  | NO   | 
+---------+---------+-----+-----+-----+-----+------+-----+-----+------+ 
|Pipelined|Buffered | NO  | YES | YES | NO  | NO   | NO  | YES | YES  | 
+---------+---------+-----+-----+-----+-----+------+-----+-----+------+ 
|Pipelined|Combined | YES | YES | YES | NO  | NO   |  1  | YES | YES  | 
+---------+---------+-----+-----+-----+-----+------+-----+-----+------+ 
|Pipelined|Pipelined| YES | YES | YES | YES | YES  | YES | YES | YES  | 
+---------+---------+-----+-----+-----+-----+------+-----+-----+------+ 
 

Figure 25 Summary of Permitted Actions By Mode Pair 

11.1 Buffered Mode 

In Buffered Mode, the Data Source MUST either transfer all data 
using the Bcopy mechanism or optionally, if the opposite half-
connection is in Pipelined Mode, the Transaction mechanism. 

Thus, only Data or SinkAvail Messages can be used by the Data Source 
to transfer ULP data. 

11.2 Combined Mode 

In Combined Mode, if the send ULP Buffer is less than or equal to 
the Data Source Bcopy Threshold, the Data Source MUST either use the 
Bcopy mechanism (i.e., by sending Data Messages) or optionally, if 
the opposite half connection is in Pipelined Mode, the Transaction 
mechanism. If the ULP Buffer is larger than the Bcopy Threshold, 
data MUST be transferred using the Read Zcopy mechanism.  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  81 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

In Combined Mode the Data Sink MUST be prepared to receive ULP data 
through either the Bcopy mechanism, the Read Zcopy mechanism, or the 
Transaction mechanism. 

In Combined Mode, if the Read Zcopy mechanism is used, after the 
Data Source sends a SrcAvail Message, it MUST NOT send any SDP 
Messages containing a ULP payload until all data transfer associated 
with the SrcAvail Message is complete (specifically, a RdmaRdCompl 
or SendSm Message is received).  

This effectively means that only a single SrcAvail Message may be 
In-Process at any one time, and the Data Source MUST NOT use the 
Bcopy Data Transfer Mechanism if a Read Zcopy is In-Process.  

In Combined Mode, the SrcAvail Message MUST contain greater than 
zero bytes of ULP payload. The actual amount of ULP data included is 
implementation dependent. 

11.3 Pipelined Mode 

In Pipelined Mode, if the ULP Buffer is less than or equal to the 
Bcopy Threshold, the Data Source MUST use either the Bcopy mechanism 
(e.g., by sending Data Messages) or optionally, if the opposite half 
connection is in Pipelined Mode, the Transaction mechanism. If the 
ULP Buffer is larger than the Bcopy Threshold, data MUST be 
transferred using either the Read Zcopy mechanism or the Write Zcopy 
mechanism. 

In Pipelined Mode the Data Sink MUST be prepared to receive ULP data 
through any of the Data Transfer Mechanisms. 

In Pipelined Mode, the Data Source MUST NOT include ULP payload in 
any SrcAvail Messages.  

After sending one or more SrcAvail Messages, the Data Source MUST 
NOT send any SDP Messages with ULP payload until all data transfers 
associated with previously sent SrcAvail Message(s) have been 
Processed. The single exception to this is the case when the Data 
Sink sends a SendSm Message. In this case, the Data Source MUST send 
the remaining data associated with the SrcAvail through Data 
Messages. The remaining Unprocessed or In-Process SrcAvail 
advertisements remain valid and MUST be Processed by the Data Sink 
after it consumes these Data Messages.  

This restriction is necessary since a crossing SinkAvail Message 
cancels any advertised SrcAvails, and the Sink would be unable to 
process the received in-line ULP payload until it received and 
processed all the data associated with the canceled SrcAvails. See 
9.2 Read Zcopy on page 56 for further details. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  82 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

The Data Sink MAY also advertise receive RDMA Buffers using 
SinkAvail Messages (i.e., Write Zcopy mechanism, which uses RDMA 
Writes). If SrcAvail and SinkAvail Messages cross, then Write Zcopy 
has higher priority than Read Zcopy (i.e., the SrcAvail Messages are 
canceled).  

The implementation MUST obey the following rules for crossing 
SinkAvail/SrcAvail advertisements. The Data Source MUST give 
precedence to discarding stale SinkAvail advertisements using the 
algorithm described in section 9.5.1 Detecting Stale SinkAvail 
Advertisements on page 65 over the requirements listed below. 

1. If the Data Source receives a SinkAvail Message: 

a. the Data Source MUST use the Write Zcopy mechanism to 
transfer data - even if it has already advertised the ULP 
send data through a SrcAvail Message. 

b. the Data Source MUST treat all outstanding SrcAvail 
advertisements as having been discarded by the Data Sink. 

This implies that if the Data Source consumes all SinkAvail 
advertisements and ULP send data remains that is suitable 
for RDMA, the Data Source SHOULD advertise the ULP data 
through a SrcAvail Message, even if a SrcAvail advertisement 
for that send RDMA Buffer was sent prior to receiving the 
SinkAvail Message. 

2. If the Data Sink receives a SrcAvail Message,  

a. and it has no Unprocessed or In-Process SinkAvail 
Message(s), the Data Sink MUST NOT send a SinkAvail Message 
and MUST transfer data using the Read Zcopy mechanism. 

b. and a SinkAvail Message is Unprocessed or In-Process, the 
Data Sink MUST discard all Unprocessed or In-Process 
SrcAvail advertisements and MUST ignore the current SrcAvail 
advertisement (but otherwise process the packet normally, 
e.g., flow control information, etc.).  

In Pipelined Mode, an implementation MAY advertise multiple 
send/receive RDMA Buffers by sending multiple SrcAvail/SinkAvail 
Messages without waiting for data transfers associated with prior 
SrcAvail/SinkAvail Messages to complete.  

The Data Sink MUST limit the maximum number of outstanding SrcAvail 
and SinkAvail advertisements to the HH or HAH MaxAdverts value 
specified by the Remote Peer during connection setup. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  83 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

12 SDP Mode Transitions 

An SDP implementation MUST only support the transitions between modes 
defined in  Figure 26. Each SDP Mode has a Mode Master, which controls 
any Mode changes, and a Mode Slave, which passively changes Mode when 
told by the Mode Master. For each Flow Control Mode, the Mode Master 
and Mode Slave MUST be as defined in Figure 27.  
   
    Connection                 Data Source specifies 
    Initialization             Move to Buffered Mode 
          -------+      +-------------------------------+ 
                 |      |                               | 
                 v      |                               v 
              +------------+                       +------------+ 
              |            |                       |            | 
              |  Combined  |                       |  Buffered  | 
              |  Mode      |                       |  Mode      | 
              |            |                       |            | 
              +------------+                       +------------+ 
                ^     |  ^     Data Sink specifies       | 
Data Source     |     |  |     move to Combined Mode     | 
specifies       |     |  +-------------------------------+ 
move to         |     | 
Combined Mode   |     | Data Source specifies 
                |     v move to Pipelined Mode 
              +------------+ 
              |            |                      Mode transitions 
              | Pipelined  |                      are signaled with 
              | Mode       |                      the ModeChange 
              |            |                      Message. 
              +------------+ 
              

Figure 26 Mode State Machine for a Half-Connection 

 

An SDP implementation MUST NOT send a ModeChange Message that 
specifies the current Mode. 

The Mode Slave MAY indicate to the Mode Master that a Flow Control 
Mode change is recommended, by either setting the REQ_PIPE flag in 
the BSDH (transition from Combined Mode to Pipelined Mode), or by 
using SendSm to transfer ULP data (transition from Pipelined Mode to 
Combined Mode or from Combined Mode to Buffered Mode). The Mode 
Master MAY choose to ignore the request. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  84 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

        +-------------+--------------+-------------------------------+ 
        | Mode        |  Master      |  Mode Change Hint From Slave  | 
        +-------------+--------------+-------------------------------+ 
        | Buffered    |  Data Sink   |  None                         | 
        +-------------+--------------+-------------------------------+ 
        | Combined    |  Data Source |  SendSm Messages or REQ_PIPE  | 
        +-------------+--------------+-------------------------------+ 
        | Pipelined   |  Data Source |  SendSm Messages              | 
        +-------------+--------------+-------------------------------+ 
 

Figure 27 Mode Master 

The Mode Master MUST change its Flow Control Mode immediately after 
sending a ModeChange Message.  

The Mode Master MAY change its Flow Control Mode before the 
completion of the transfer of the ModeChange Message. In a specific 
Flow Control Mode, the Mode Master MUST only use Data Transfer 
Mechanisms allowed for that Mode (see section 11 SDP Flow Control 
Modes on page 78). For example, if the prior Mode was Combined Mode 
and the current Mode is Buffered Mode, the Data Source must not 
generate SrcAvail Messages. 

When the Mode Slave receives the ModeChange Message, the slave MUST 
immediately set its current Flow Control Mode to the Mode specified 
in the ModeChange Message.  

In a specific Mode, the Mode Slave MUST only use Data Transfer 
Mechanisms allowed for that Mode. For example, if the prior Mode was 
Pipelined Mode and the current Mode is Combined Mode, the Data Sink 
(slave) MUST NOT generate SinkAvail Messages. 

Depending on the Mode transition, the Mode Master and Mode Slave MAY 
be required to take some further actions, as described later in this 
chapter. 

When a connection is first set up, the Local Peer MUST set the 
initial Flow Control Mode for the local Data Sink and Data Source to 
be Combined Mode (see section 8 Connection Setup on page 47). 

The following subsections give details of SDP Message exchanges 
needed to transition from one Flow Control Mode to another. Each 
transition is caused by sending a ModeChange Message. 

12.1 Transition from Combined Mode to Buffered Mode 

To transition from Combined to Buffered Mode, the Data Source (Mode 
Master) MUST send a ModeChange Message with the MCH fields set as 
follows: 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  85 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

* S=0, (i.e., change the Data Sink Mode) 

* Mode = BUFF_MODE (see section 6.3.8.2 Mode - 3 bits on page 
26)  

The Data Source MUST NOT send the ModeChange Message until all 
Unprocessed or In-Process Read Zcopy transfers have been moved to 
the Processed state with either a RdmaRdCompl or SendSm Message from 
the Data Sink (there will be at most one outstanding in Combined 
Mode).  

This ensures that no SDP Messages specific to Combined Mode (i.e., 
those related to the Read Zcopy mechanism) can be received by either 
peer when in Buffered Mode. 

12.2 Transition from Buffered Mode to Combined Mode 

To transition from Buffered to Combined Mode, the Data Sink (Mode 
Master) MUST send a ModeChange Message with the MCH fields set as 
follows: 

* S=1 (i.e., change the Data Source Mode) 

* Mode = COMB_MODE (see section 6.3.8.2 Mode - 3 bits on page 
26) 

Because all SDP Message types that are legal for Buffered Mode are 
also legal for Combined Mode, no special action is needed for this 
transition. 

12.3 Transition From Combined Mode to Pipelined Mode 

To transition from Combined to Pipelined Mode, the Data Source (Mode 
Master) MUST send a ModeChange Message with the MCH fields set as 
follows: 

* S=0 (i.e., change the Data Sink Mode) 

* Mode = PIPE_MODE (see section 6.3.8.2 Mode - 3 bits on page 
26) 

Because all SDP Message types that are legal for Combined Mode are 
also legal for Pipelined Mode, no special action is needed for this 
transition. For example, if the Data Source has an outstanding 
SrcAvail advertisement (and there can be at most one such 
advertisement outstanding in Combined Mode), then the Data Source 
need not wait for a RdmaRdCompl or SendSm before sending the 
ModeChange Message.  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  86 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

12.4 Transition From Pipelined Mode to Combined Mode 

To transition from Pipelined to Combined Mode, the Data Source (Mode 
Master) MUST send a ModeChange Message with the MCH fields set as 
follows: 

* S=0 (i.e., change the Data Sink Mode) 

* Mode = COMB_MODE (see section 6.3.8.2 Mode - 3 bits on page 
26) 

After sending the ModeChange Message, the Data Source MUST 
immediately transition to Combined Mode, and the Data Source MUST 
NOT subsequently switch to any other Flow Control Mode until it 
receives an SDP Message with the following constraint: 

MSeqAck >= (MSeq of the ModeChange Message) 

In the above calculation, MSeqAck and “MSeq of the ModeChange 
Message” are treated as signed integers. 

This constraint ensures that all stale SinkAvail Messages will be 
received at the Data Source before a transition out of Combined 
Mode. The behavior upon receiving a stale SinkAvail Message while in 
Combined Mode is described later in this section. 

If data transfer is occurring, the Data Source is guaranteed to 
eventually receive the acknowledgement for the ModeChange Message. 
If no data transfer is occurring, the acknowledgement can take an 
indeterminate amount of time. However, there is no need to 
immediately switch out of Combined Mode if no data transfer is 
occurring.  

The transition from Pipelined to Combined Mode imposes additional 
constraints on the Data Source and Data Sink.  

The transition from Pipelined Mode to Combined Mode MUST be governed 
by Figure 28 Data Source Transition from Pipelined to Combined Mode 
on page 88 and Figure 29 Data Sink Transition from Pipelined to 
Combined Mode on page 89. 

Before the Data Source transitions from Pipelined to Combined Mode, 
the Data Source MUST complete any RDMA Writes that are In-Process, 
and issue all RdmaWrCompl Messages before sending a ModeChange 
Message.  

This ensures that RDMA Writes will not be used in Combined Mode. 

Before the Data Source transitions from Pipelined to Combined Mode, 
if the Data Source has incomplete SinkAvail advertisements, the Data 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  87 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Source MUST discard those advertisements and MUST re-issue all 
Unprocessed or In-Process SrcAvail Messages, if there are any.  

After the transition to Combined Mode, normal Combined Mode rules 
apply. For example, only one SrcAvail Message may be outstanding at 
any one time and the SrcAvail Message must contain ULP payload. If 
the Data Source has no incomplete SinkAvail advertisements, but a 
SinkAvail advertisement is received before the acknowledgement for 
the ModeChange Message, the Data Source ignores the SinkAvail 
Message (but process flow control information, etc.) and re-issue 
all outstanding SrcAvail Messages according to Combined Mode rules. 
In either case, if any more SinkAvail Messages arrive after the 
initial discard of SinkAvail Message(s), the Data Source must ignore 
these SinkAvail Messages (but must process flow control information, 
etc., normally). 

Normal Data Sink behavior in Pipelined Mode requires it to drop any 
SrcAvail Messages (but process flow control information, etc.) if 
there is a SinkAvail outstanding.  

Thus, the only behavior the Data Sink MUST follow when transitioning 
to Combined Mode after receiving the ModeChange Message is to 
invalidate local state associated with any outstanding SinkAvail 
Messages.  

12.5 State Mode Transition Summary 

Figure 30 Data Source Mode Transition Events on page 90 and Figure 
31 Data Sink Mode Transition Events on page 91 summarize the events 
and consequent actions for the Data Source and Data Sink, 
respectively. Advisory input to the Mode Master to change modes is 
not meant to be exhaustive. The Mode Master MAY change modes at any 
time, possibly for reasons beyond the scope of this specification. 
The figures only list events that may cause a Mode transition, or 
may be an event that is handled uniquely in a specific Mode. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  88 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

                Data Source decides to switch to Combined Mode   
                                            |    
                                      /-----+------\ 
                           yes       / RDMA write(s)\ 
                      +-------------+ In-process     + 
                      |              \      ?       / 
                      v               \-----+------/ 
             +-----------------+            | 
             | Finish and send |            | 
             | RdmaWrCompl(s)  |            | no 
             +-----------------+            | 
                      |                     | 
                      +-------------------->+ 
                                            v 
                                   +-----------------+ 
                                   | Send ModeChange | 
                                   +-----------------+ 
                                            | 
                                            v 
                                      /-----+-----\ 
                            yes      / SinkAvail(s)\ 
                      +-------------+ Incomplete    + 
                      |              \      ?      / 
                      v               \-----+-----/ 
           +--------------------+           | 
           | Discard Incomplete |           | no 
           | SinkAvail(s)       |           v 
           +--------------------+    /------+-------\ 
                      |    yes      / SinkAvail      \ 
                      +<-----------+ received before + 
                      |             \ ModeChange Ack?/  
                      v              \------+-------/ 
        +-----------------------+           | 
        | Re-issue all          |           | no 
        | outstanding SrcAvails |           | 
        +-----------------------+           | 
                      |                     | 
                      v                     | 
        +-----------------------+           | 
        | Discard all SinkAvails|           | 
        | until ModeChange Ack  |           | 
        +-----------------------+           | 
                      |                     | Data Source may 
                      +-------------------->+ initiate another Mode 
                                            v transition (if needed) 
 

Figure 28 Data Source Transition from Pipelined to Combined Mode 

                          ModeChange Message 
                          Received by Data Sink 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  89 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

                                   | 
                                   | 
                                   v 
                        +----------------------+ 
                        | Stop sending         | 
                        | SinkAvail Messages   | 
                        +----------------------+ 
                                   | 
                                   v 
                          /--------+----------\ 
                yes      /   Outstanding       \ 
            +-----------+    SinkAvail(s)       + 
            |            \          ?          / 
            v             \--------+----------/ 
    +----------------+             | 
    | Discard all    |             | no 
    | outstanding    |             | 
    | SinkAvails     |             | 
    +----------------+             | 
            |                      | 
            +--------------------->+ 
                                   | 
                                   v 
                            Proceed with Combined 
                            Mode behavior 
 

Figure 29 Data Sink Transition from Pipelined to Combined Mode 

 

 

 

 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  90 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

   +-------------+---------------------+-----------------------------+ 
   | Data Source | Event               | Action/Transition           | 
   | Mode        |                     |                             | 
   +-------------+---------------------+-----------------------------+ 
   | Combined    | Receive REQ_PIPE=1  | Advisory: May decide to     | 
   | (master     | in RdmaRdCompl msg  | transition to Pipelined Mode| 
   |             +---------------------+-----------------------------+ 
   |             | Data Source decides | If outstanding SrcAvail,    | 
   |             | to change Modes to  | wait for RdmaRdCompl or     | 
   |             | Buffered            | SendSm from Data Sink,      | 
   |             |                     | then send ModeChange Message| 
   |             +---------------------+-----------------------------+ 
   |             | Data Source decides | Change to Pipelined Mode    | 
   |             | to change to        | and send a ModeChange       | 
   |             | Pipelined Mode      | Message                     | 
   |             +---------------------+-----------------------------+ 
   |             | Receive SendSm      | Advisory: May decide to     | 
   |             |                     | transition to Buffered Mode | 
   |             +---------------------+-----------------------------+ 
   |             | Receive SinkAvail   | Can happen if just          | 
   |             |                     | transitioned from Pipelined | 
   |             |                     | Mode. See Figure 28 Data    | 
   |             |                     | Source Transition from      | 
   |             |                     | Pipelined to Combined Mode  | 
   |             |                     | for processing details.     | 
   +-------------+---------------------+-----------------------------+ 
   | Buffered    | Receive ModeChange  | Immediately transition to   | 
   | (slave)     | MSG with S=1 and    | Combined Mode.              | 
   |             | Mode=COMB_MODE      |                             | 
   +-------------+---------------------+-----------------------------+ 
   | Pipelined   | Receive SendSm      | Advisory: May decide to     | 
   | (master)    |                     | transition to Combined Mode | 
   |             +---------------------+-----------------------------+ 
   |             | Data Source decides | Change to Combined Mode and | 
   |             | to change to Comb.  | send a ModeChange Message.  | 
   |             | Mode                | See Figure 28 Data Source   | 
   |             |                     | Transition from Pipelined to| 
   |             |                     | Combined Mode for processing| 
   |             |                     | details.                    | 
   +-------------+---------------------+-----------------------------+ 
 

Figure 30 Data Source Mode Transition Events 

 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  91 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

   +-------------+---------------------+-----------------------------+ 
   | Data Sink   | Event               | Action/Transition           | 
   | Mode        |                     |                             | 
   +-------------+---------------------+-----------------------------+ 
   | Combined    | Receive ModeChange  | Immediately transition to   | 
   | (slave)     | Message with S=0 and| Buffered Mode               | 
   |             | Mode=BUFF_MODE      |                             | 
   |             +---------------------+-----------------------------+ 
   |             | Receive ModeChange  | Immediately transition      | 
   |             | Message with S=0 and| to Pipelined Mode           | 
   |             | Mode=PIPE_MODE      |                             | 
   +-------------+---------------------+-----------------------------+ 
   | Buffered    | ULP receive buffer  | Advisory: If the receive ULP| 
   | (master)    | is posted           | buffer is suitable for RDMA,| 
   |             |                     | the Data Sink may choose to | 
   |             |                     | transition to Combined Mode | 
   |             +---------------------+-----------------------------+ 
   |             | Data Sink decides to| Send ModeChange Message     | 
   |             | change to Combined  |                             | 
   |             | Mode                |                             | 
   +-------------+---------------------+-----------------------------+ 
   | Pipelined   | Receive ModeChange  | Immediately transition to   | 
   | (slave)     | Message with S=0 and| Combined Mode. See Figure 29| 
   |             | Mode=COMB_MODE      | Data Sink Transition from   | 
   |             |                     | Pipelined to Combined Mode  | 
   |             |                     | for processing details.     | 
   +-------------+---------------------+-----------------------------+ 
 

Figure 31 Data Sink Mode Transition Events 

 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  92 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

13 Socket Duplication 

When a socket exists in one address space and is then accessed in a 
different address space (on the same peer), the socket needs to be 
duplicated into the second address space. Note that if two threads 
are accessing the socket in the same address space, socket 
duplication is not required. 

Performing socket duplication in user-mode imposes certain 
restrictions because socket state cannot be shared between the 
address spaces. In fact, in the context of iWARP networks available 
today, the socket can only exist in one address space at a time 
(since RNICs are not required to support sharing Connection Context 
memory between multiple address spaces). Because of these 
restrictions, SDP allows only one address space at a time to execute 
operations that either transfer data or change state for an 
underlying shared socket. Address spaces dynamically swap control of 
the underlying socket, as needed, to execute requested operations. 
The SDP socket duplication procedure serializes operations that 
different address spaces request on a shared socket. The procedure 
waits for all In-Process operations to complete before swapping 
control of an underlying socket to another address space. Logically, 
the procedure takes control of the underlying socket away from the 
Controlling Address Space as soon as a non-Controlling Address Space 
requests an operation on that socket. After control is taken away, 
the procedure treats the original Controlling Address Space like a 
non-Controlling Address Space if the original Controlling Address 
Space requests operations on that socket. In this way a socket may 
transition back and forth between Controlling Address Spaces based 
on ULP behavior. 

SDP enables socket duplication by bringing the connection to a 
consistent state, closing the LLP connection, handing the state to 
the new Controlling Address Space, and then creating a new 
connection in the new address space. Note that after the connection 
is suspended and then restarted on a new LLP connection, the 
connection, by definition, does not have any outstanding SinkAvail 
or SrcAvail advertisements. Any incomplete SinkAvail or SrcAvail 
advertisements were effectively canceled during the transition to a 
new connection. 

13.1 Implementing Socket Duplication 

An SDP implementation is REQUIRED to support responding to a socket 
duplication request using the procedure defined for the Remote Peer 
in section 13.1.1. 

If SDP socket duplication initiation is supported, an SDP Local Peer 
MUST employ the procedure defined in section 13.1.1 when initiating 
socket duplication. Initiation of socket duplication is OPTIONAL. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  93 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

13.1.1 Socket Duplication Procedure 

1. The SDP implementation in the non-Controlling Address Space MUST 
enable an accept for incoming connection requests at a TCP 
destination port. 

This may or may not be the original TCP port number 
specified during the initial connection setup. The 
connection request MUST NOT be completed unless the source 
IP address, destination IP address, and source TCP port 
number contained in the Hello Message match the expected 
value.  

2. The SDP implementation in the Controlling Address Space MUST 
wait for all In-Process data transfer operations to complete, 
then it MUST send a SuspComm Message to the Remote Peer to 
request a suspension of the session. This SDP Message contains 
the destination TCP port number received from the non-
Controlling Address Space. The Remote Peer MUST connect to this 
TCP port number when resuming communication (step 4). The Local 
Peer MUST NOT send additional SDP Messages or perform any RDMA 
operations from the Controlling Address Space, after sending the 
SuspComm Message. 

3. Upon receiving the SuspComm Message, the Remote Peer MUST wait 
for all In-Process data transfer operations to complete, then 
MUST send a SuspCommAck Message indicating that the session is 
suspended. After sending the SuspCommAck Message, this peer MUST 
NOT send any more SDP Messages or perform any RDMA operations 
until a new connection is set up (step 8).  

4. The Remote Peer MUST wait for completion of the send of the 
SuspCommAck Message, then close the LLP connection. The Remote 
Peer MUST then initiate the new connection to the destination 
TCP port number received through the SuspComm Message, utilizing 
the same IP address specified in the prior connection setup 
sequence. Posting of receive Private Buffers and the contents of 
the HH MUST follow the same rules as connection setup (see 
section 8 Connection Setup on page 47). 

5. Once the SuspCommAck Message is received, the Controlling 
Address Space on the Local Peer MUST send a signal to the non-
Controlling Address Space through some private means outside the 
scope of this specification. The Controlling Address Space MUST 
also send to the non-Controlling Address Space through some 
private means outside the scope of this specification: 

* Any buffered receive ULP data.  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  94 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

* The Remote Peer’s TCP port number (to ensure the parameter 
does not change when the socket is re-connected).  

* The size of the local receive Private Buffers. 

* The current values for IRD and ORD. 

6. The non-Controlling Address Space MUST accept the connection 
request from the Remote Peer and initialize its state variables 
for the new connection. The Hello Message initializes SDP 
connection state.  

7. When both steps 5 and 6 have completed, the (previously) non-
Controlling Address Space: 

a. MUST send a HelloAck Message to the Remote Peer (see section 
8 Connection Setup on page 47). The receive Private Buffer 
size parameter in the HelloAck Message MUST be the values 
received from the Controlling Address Space. The IRD and ORD 
values MAY be the values received from the Controlling 
Address Space. 

b. MUST make buffered received ULP data from the Controlling 
Address Space available to the ULP.  

8. When connection setup is complete, the Local Peer MUST resume 
normal data transfer. See section 8.1.1 iWARP Connection Setup 
on page 47.  

13.1.2 Conflict Resolution 

If both peers concurrently send each other SuspComm Messages, then 
the Accepting Peer MUST disregard the SuspComm Message, while the 
Connecting Peer MUST respond to the SuspComm Message. The Connecting 
Peer MUST re-send its own SuspComm Message once communication is re-
established. 

13.2 SDP Managed Failover 

SDP supports Managed Failover by leveraging the Socket Duplication 
procedure (see section 13 Socket Duplication on page 92). Note that 
LLP managed failover between RNICs may be done by other mechanisms. 
Such mechanisms are beyond the scope of this specification.  

During socket duplication, a change of address space is occurring. 
In managed failover, the SDP connection MAY in fact be reestablished 
using different paths, ports, RNICs or hosts. The original 
connection in a managed failover scenario is analogous to the 
Controlling Address Space in socket duplication. The new failed over 
connection is analogous to the non-Controlling Address Space. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  95 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Managed failover changes where one end of the connection is 
situated. Failing over both ends requires two managed failover 
operations. 

The decision to attempt a managed failover must occur before step 1 
of the Socket Duplication procedure. How such a decision is made is 
dependent on policy and outside the scope of the SDP specification. 

If an SDP implementation supports SDP Managed Failover, it MUST do 
so using the socket duplication procedure with the following change 
to Step 1: 

An implementation MUST choose a new endpoint for the failover 
connection. How the new endpoint is chosen is a matter of policy. 
However, the endpoint must be chosen in such a way that the address 
(see section 7 on page 31) will resolve to the failover port. This 
address resolution uses the IP addresses from the original 
connection. As before, the TCP destination port chosen for the 
SuspComm Message (see section 6.5.1 SuspComm Message on page 29) 
should resolve to the failover endpoint. 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  96 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

14 SDP Usage of iWARP and LLP Features  

14.1 iWARP Message Requirements 

A conforming implementation of SDP MUST enable RDMA Reads and RDMA 
Writes on each connection.  

14.2 Solicited Events 

An SDP implementation occasionally needs to stop processing on a 
half-connection and wait for one of the following SDP Messages to 
arrive before proceeding further: 

1. Flow control credit update SDP Message - flow control credits 
for the receive Private Buffer pool have been exhausted, thus it 
cannot send data, control, and/or RDMA advertisement to the 
peer; 

2. Data or RDMA advertisement SDP Message - the ULP has indicated 
its interest in data via a sockets interface select call or 
receive; 

3. RDMA completion (or cancel) SDP Message - before it can de-
register a send or receive RDMA Buffer it must either complete 
the RDMA transfer or receive a cancel acknowledgement message. 

A typical SDP implementation would request completion queue 
notification and block the ULP process (or thread) until the 
appropriate SDP Message arrives and the notification is delivered. 
The goal of using iWARP Send with Solicited Event Message is to 
minimize completion queue notification events and corresponding 
process (or thread) wake-ups when the arriving SDP Message does not 
match the class of SDP Messages that the implementation requires. 
For example, if the Data Source is waiting for a RdmaRdCompl Message 
to complete a send ULP Buffer and there is no local receive ULP 
Buffer posted or local invocation of a sockets interface select on 
the opposite half-channel (local Data Sink), it should not receive 
notifications for the opposite half-connection if the peer sends a 
Data Message or SrcAvail RDMA advertisement. 

To accomplish this goal, all SDP Messages are subdivided into 
solicited or unsolicited SDP Messages.  

Solicited SDP Messages are those that most likely require immediate 
attention regardless of ULP behavior at the Remote Peer and 
regardless of whether the Remote Peer is waiting for other 
(unsolicited) SDP Messages. Solicited SDP Messages are defined as: 

* AbortConn, SuspComm, SuspCommAck, SendSm, SrcAvailCancel, 
SinkAvailCancel, HelloAck - because it is essential for the 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  97 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

sender of these SDP Messages that its peer react to them as 
soon as possible; 

* RdmaWrCompl, RdmaRdCompl, SinkCancelAck - because the peer 
most likely needs to deregister and release RDMA Buffers to 
the ULP upon reception of these SDP Messages; 

* Data with OOB_PRES or OOB_PEND bit set - because the peer 
SDP implementation most likely needs to notify the ULP as 
soon as possible that this SDP Message has been received. 

An SDP implementation MUST use an iWARP Send with Solicited Event or 
Send with Solicited Event and Invalidate Message for solicited SDP 
Messages. 

Unsolicited SDP Messages are those that may require immediate 
attention by the Remote Peer, but only that Peer can decide whether 
or not a notification is necessary - it depends on the ULP behavior 
or the implementation of that Remote Peer. Unsolicited SDP Messages 
are defined as: 

* DisConn, SrcAvail, Data without OOB_PEND or OOB_PRES bit set 
- because the peer only needs to immediately process these 
SDP Messages when the ULP has issued a sockets interface 
select or receive request; 

* ModeChange, ChRcvBuf, ChRcvBufAck - because after receiving 
these SDP Messages, the peer only needs to take action for 
new SDP Messages it generates itself, or for SDP Messages 
that follow that are solicited SDP Messages (e.g., it will 
not be blocked specifically waiting for these SDP Messages). 

An SDP implementation MUST use an iWARP Send Message or Send with 
Invalidate Message for Unsolicited SDP Messages.  

Solicited events are never applicable for RDMA Read or RDMA Write 
operations.  

14.3  Keepalive Messages 

The sockets interface provides the ULP with the capability to 
periodically transmit messages to the peer (which require an answer) 
to determine if the peer is still alive (SO_KEEPALIVE). This is 
referred to as the keepalive feature, and the associated messages 
are known as keepalive messages. The keepalive feature is OPTIONAL. 
If an SDP implementation supports the keepalive feature, then it 
MUST implement this functionality by turning on the TCP keepalive 
timer.   



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  98 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

15 Security Considerations 

This section describes security issues related to the implementation 
and use of the Port Mapper and SDP protocols. Only the security 
issues specific to those protocols are described here. Security 
issues for the Direct Data Placement (DDP) and Remote Direct Memory 
Access Protocol (RDMAP) are covered in a separate document, [RDDP-
Security].  

Both the Port Mapper service provider (PMSP) and an SDP 
implementation are required to communicate with Untrusted Remote 
Peers. Therefore, countermeasures should be put into place to guard 
against the different types of deliberate attacks that could be 
launched by Remote Peers. 

This section describes many of the attacks that are possible, but 
may not be comprehensive. More attacks may be possible than have 
been enumerated here. 

15.1 Spoofing 

Spoofing is a potential issue for both the Port Mapper and SDP 
protocols. A man-in-the-middle with the appropriate capabilities 
(primarily the ability to generate packets that will be accepted by 
the LLP) could generate attacks that result in denial of service, 
tampering, information disclosure and repudiation.  

The best protection against this form of attack is through the use 
of end-to-end authentication, such as IPSec. 

15.2 Denial of Service (DOS) 

15.2.1 Port Flooding 

A DOS attack against the Port Mapper service provider is relatively 
simple to launch. The most straightforward attack is to send a flood 
of UDP messages to the PMSP port. A similar style of attack could be 
launched against the SDP listen port, keeping legitimate requests 
from being able to access the port. Flooding a PMSP is potentially 
more serious than an SDP listen port. For most configurations, 
flooding the PMSP port is likely to affect more clients because 
generally there are fewer PMSPs to handle requests than nodes 
supplying SDP services, but there is at least one SDP listen port is 
present per node. 

One potential countermeasure is to set an aggressive timeout on the 
state created due to a PMReq Message and release the associated 
resources on expiration of the timer. Another countermeasure that 
could be used alone or in conjunction with a timeout is to track the 
rate of attack and raise an alarm to management indicating an 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  99 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

arrival rate outside of the expected bounds from either one or 
multiple nodes. Management could take steps to source quench any 
node that attempts partial mappings that timeout more than N times 
within a defined time period. In addition, the Port Mapper service 
provider (PMSP) could be implemented as a distributed service, 
making it more difficult for an attacker to flood all of the PMSPs 
in the system at the same time.  

15.2.2 Resource Consumption by an Idle Process 

15.2.2.1 Port Mapper 

When the attacker builds a valid PMReq message, in addition to 
potentially keeping other legitimate clients from being able to get 
their requests through to the PSMP, it is possible for the attacker 
to consume all of the resources associated with the SDP listen 
port(s) managed by the PSMP.  

The countermeasures taken to thwart the flood of incoming requests 
should help to mitigate the potential damage. The same 
countermeasures described in 15.2.1 Port Flooding apply to this 
scenario. 

15.2.2.2 SDP Protocol 

An attacker could consume even more resources by sending valid SDP 
Hello Messages in an attempt to establish multiple SDP connections. 
This requires more sophistication by the attacker because the Stream 
already must have been ESTABLISHED, and the attacker must be able to 
send valid SDP Hello Messages. Additional resources are allocated 
for the SDP connection context, if the connection request is 
accepted. 

This type of attack is less likely because it requires more 
sophistication and effort on the part of an attacker. 

One countermeasure is to install a filter against the attacker, 
since it is possible to tell for sure who it is given the Stream is 
already established, and the attacker must be able to send and 
receive data. 

 



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  100 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

16 IANA Considerations 

Issue: The Port Mapper requires an IANA port - need to get one 
allocated by IANA and document it here. 

The Port Mapper Service by default MUST use UDP Port [TBD by IANA].  



 SDP for iWARP over TCP October 31, 2003 

Pinkerton, et al.  101 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

17 References 

17.1 Normative References 

[RFC1982] Elz, R., Bush, R., "Serial Number Arithmetic", RFC1982, 
August 1996. 

[RFC2026] Bradner, S., "The Internet Standards Process -- Revision    
3", BCP 9, RFC 2026, October 1996. 

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate    
Requirement Levels", BCP 14, RFC 2119, March 1997. 

[TCP] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, 
September 1981. 

[UDP] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 
1980. 

[MPA] P. Culley et al., "Markers with PDU Alignment", RDMA 
Consortium Released Specification draft-cully-iwarp-mpa-v1.0, 
October 2002 (see http://www.rdmaconsortium.org/). 

[DDP] H. Shah et al., "Direct Data Placement over Reliable 
Transports", RDMA Consortium Released Specification draft-shah-
iwarp-ddp-v1.0, October 2002 (see 
http://www.rdmaconsortium.org/). 

[RDMAP] R. Recio et al., "RDMA Protocol Specification", RDMA 
Consortium Released Specification draft-recio-iwarp-v1.0, 
October 2002 (see http://www.rdmaconsortium.org/). 

17.2 Informative References 

[IPSEC]  Atkinson, R., Kent, S., "Security Architecture for the 
Internet Protocol", RFC 2401, November 1998. 

[VERBS] J. Hilland et al., "RDMA Protocol Verbs Specification", RDMA 
Consortium Released Specification draft-hilland-iwarp-v1.0, 
April 2003 (see http://www.rdmaconsortium.org/). 

[IBTA-SDP] InfiniBand Architecture Specification, Volume 1, Release 
1.1 (http://www.infinibandta.org/specs) 

[RDMAP-SECURITY] J. Pinkerton et al., “DDP/RDMAP Security”, IETF 
Internet Draft draft-pinkerton-rdddp-security-00, June 2003. 



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

18 Author’s Addresses 

James Pinkerton 
Microsoft Corporation 
One Microsoft Way 
Redmond, WA. 98052 USA 
Phone: +1 (425)705-5442 
Email: jpink@windows.microsoft.com 

Ellen Deleganes 
Intel Corporation 
MS JF3-206 
2111 NE 25th Ave.       
Hillsboro, OR 97124 USA 
Phone:  +1 (503) 712-4173 
Email: ellen.m.deleganes@intel.com 

Michael Krause  
Hewlett-Packard Company, 43LN 
19410 Homestead Road 
Cupertino, CA 95014 USA 
Phone: +1 (408) 447-3191 
Email: krause@cup.hp.com 

 



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

19 Acknowledgments 

John Carrier 
Adaptec, Inc. 
691 S. Milpitas Blvd. 
Milpitas, CA 95035 USA 
Phone: +1 (360) 378-8526 
Email: john_carrier@adaptec.com 

Patricia Thaler 
Agilent Technologies, Inc. 
1101 Creekside Ridge Drive, #100  
M/S-RG10 
Roseville, CA 95678 USA 
Phone: +1 (916) 788-5662 
email: pat_thaler@agilent.com 

Mike Penna  
Broadcom Corporation 
16215 Alton Parkway 
Irvine, CA 92619-7013 USA 
Phone: +1 (949) 926-7149 
Email: MPenna@Broadcom.com 

Uri Elzur  
Broadcom Corporation 
16215 Alton Parkway 
Irvine, CA 92619-7013 USA 
Phone: +1 (949) 585-6432 
Email: Uri@Broadcom.com 

Ted Compton 
EMC Corporation 
Research Triangle Park, NC 27709 USA 
Phone: +1 (919) 248-6075 
Email: compton_ted@emc.com 

Frank Berry 
Intel Corporation 
2111 NE 25th Ave. 
Hillsboro, OR 97124 USA 
Phone: +1 (503) 712-3897 
Email: frank.berry@intel.com 

Tom Talpey 
Network Appliance 
375 Totten Pond Road 
Waltham, MA 02451 USA 
Phone: +1 (781) 768-5329 
Email: thomas.talpey@netapp.com  



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Dwight Barron  
Hewlett-Packard Company 
20555 SH 249  
Houston, TX 77070-2698 USA 
Phone: +1 (281) 514-2769 
Email: Dwight.Barron@Hp.com  

Mallikarjun Chadalapaka 
Hewlett-Packard Company 
8000 Foothills Blvd. 
Roseville, CA 95747-5668, USA 
Phone: +1 (916) 785-5621  
Email: cbm@rose.hp.com 

Bill Edwards 
Hewlett-Packard Company 
20555 SH 249 
Houston, TX 77070-2698 USA 
Phone: +1 281 518 9034 
Email: w.Edwards@hp.com 

Dave Garcia 
Hewlett-Packard Company 
19333 Vallco Parkway 
Cupertino, CA 95014 USA 
Phone: +1 (408) 285-6116 
Email: dave.garcia@hp.com 

Jeff Hilland 
Hewlett-Packard Company 
20555 SH 249 
Houston, TX 77070-2698 USA 
Phone: +1 (281) 514-9489 
Email: jeff.hilland@hp.com 

Renato Recio 
IBM Corporation 
11501 Burnett Road  
Austin, TX 78758 USA 
Phone: +1 (512) 838-1365 
Email: recio@us.ibm.com 

John L. Hufferd 
IBM Corp. 
650 Harry Rd. 
San Jose CA 
Phone: +1 (408) 256-0403 
Email: hufferd@us.ibm.com 



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Mike Ko 
IBM Corp. 
650 Harry Rd. 
San Jose, CA 95120, USA 
Phone: +1 (408) 927-2085 
Email: mako@us.ibm.com 

James Livingston 
NEC Solutions (America), Inc. 
7525 166th Ave. N.E., Suite D210 
Redmond, WA 98052-7811 
Phone: +1 (425) 897-2033 
Email: james.livingston@necsam.com 

Hemal Shah 
Intel Corporation 
MS PTL1 
1501 South MoPac Expressway, #400 
Austin, TX 78746, USA 
Phone: +1 (512) 732-3963 
Email: hemal.shah@intel.com 

 

 

 



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

20 Full Copyright Statement 

This document and the information contained herein is provided on 
an “AS IS” basis and ADAPTEC INC., AGILENT TECHNOLOGIES INC., 
BROADCOM CORPORATION, CISCO SYSTEMS INC., DELL INC., EMC 
CORPORATION, HEWLETT-PACKARD COMPANY, INTERNATIONAL BUSINESS 
MACHINES CORPORATION, INTEL CORPORATION, MICROSOFT CORPORATION, NEC 
SOLUTIONS (AMERICA), INC., AND NETWORK APPLIANCE INC. DISCLAIM ALL 
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 
FOR A PARTICULAR PURPOSE. 

Copyright (c) 2002, 2003 ADAPTEC INC., BROADCOM CORPORATION, CISCO 
SYSTEMS INC., DELL INC., EMC CORPORATION, HEWLETT-PACKARD COMPANY, 
INTERNATIONAL BUSINESS MACHINES CORPORATION, INTEL CORPORATION, 
MICROSOFT CORPORATION, NETWORK APPLIANCE INC., All Rights Reserved. 

 


